
From Sign Language to Speech using
Artificial Intelligence

Andreas Holmer Bigom, Michael Alexander Harborg,
Niels Raunkjær Holm

Bachelor Project
June 19, 2023

From Sign Language to Speech using Artificial Intelligence

Abstract

The ability to communicate is a defining characteristic of what constitutes being
human. It allows us to express ourselves, cooperate, and foster new relationships.
Being deaf or mute, however, presents unique challenges in the context of inter-
personal communication. Sign language is the primary means of communication for
over 72 million people worldwide [7]. Currently, the language barrier between signers
and non-signers is bridged through scarce and costly human interpreters. Enabling
communication between signers and non-signers at an on-demand basis could thus
impact millions of people.

A domain within machine learning which addresses this is Sign Language Trans-
lation (SLT). However, SLT is still in its early phases which can in part be attributed
to a lack of large, high quality datasets as well as having to bridge the modalities of
video and text. In spite of these challenges, recent advances in the field have yielded
substantial increases in model performance. Most notable is the current state-of-the-
art (SOTA) SLT method [5], who address the issue of data scarcity through domain
adaptation and progressive pre-training. In spite of the impressive results, a crucial
bottleneck of this model is that it requires gloss annotations1 for supervision.

This project revolves around assessing the feasibility of developing an application
to allow for on-demand communication between signers and non-signers. To this
end, we reproduce the current SOTA SLT method [5] by manually implementing it
from scratch. Furthermore, we design an application pipeline whose architecture is
centered around reducing latency during conversations. To accommodate language
differences between users and improve the user experience, various external APIs are
incorporated. Additionally, to assess the prospect of leveraging large SLT datasets,
an ablation study is conducted where gloss annotations are approximated.

Upon developing the model as well as application, several tests were conducted
to assess the individual performance of its components. This includes assessing the
success of reproducing the model along with the effect on performance of approximat-
ing glosses. Additionally, the model’s ability to generalize is assessed by evaluating
model performance on new unseen data. Following this, the latency surrounding
translation is tested on consumer-grade hardware. Furthermore, the effect on model
performance when downsampling input videos along the temporal axis is assessed in
conjunction with its effect on application latency.

Based on the analyses described above, it can be concluded that we were success-
fully able to reproduce the SOTA SLT model [5] within a reasonable margin of error.
Furthermore, when approximating glosses we outperform existing approaches which
do not rely on these annotations. Moreover, when assessing application latency on
consumer-grade hardware, our pipeline approaches real-time SLT as defined in the
context of this report. Future research should explore means of circumventing the
need for expertly-annotated glosses. Additionally, considering the execution time
of different components of the application pipeline, further work should experiment
with the potential benefits from hosting the SLT model in the cloud.

1Glosses are word-for-word transcriptions of each sign in an input video which capture its se-
mantic meaning.

Page 1 of 80

From Sign Language to Speech using Artificial Intelligence

Acknowledgements

Advisors

Morten Mørup, professor at DTU
Carsten Witt, professor at DTU

Page 2 of 80

From Sign Language to Speech using Artificial Intelligence

Contents

1 Introduction 7
1.1 Research Questions . 8
1.2 Report Outline . 9

2 Data 11
2.1 Presentation and Summary Statistics 11

2.1.1 PHOENIX-2014T . 11
2.1.2 WLASL . 12
2.1.3 Kinetics-400 . 12
2.1.4 Properties of the Considered Datasets 12
2.1.5 General Data Availability . 13

2.2 Ethical Considerations . 14
2.2.1 Privacy . 14
2.2.2 Bias . 14

3 Methods 15
3.1 Proposed Model Architecture . 15
3.2 Sign2Gloss Task . 16

3.2.1 S3D . 17
3.2.2 Classifier . 18
3.2.3 Implementation Details - WLASL (Single Gloss) 18
3.2.4 Head Network . 19
3.2.5 CTC Loss and Decoding . 20
3.2.6 Implementation Details - PHOENIX-2014T (Gloss-Sequence) 27

3.3 Gloss2Text Task . 27
3.3.1 Transformers . 27
3.3.2 mBART . 34
3.3.3 Beam Search Decoding . 35
3.3.4 Implementation Details PHOENIX-2014T 36

3.4 Sign2Text Task . 37
3.4.1 VL-mapper . 37
3.4.2 Full Model Pipeline . 38
3.4.3 Implementation Details - PHOENIX-2014T 39

3.5 Evaluation Metrics . 39
3.5.1 Word Error Rate . 39
3.5.2 ROUGE . 39
3.5.3 BLEU . 40

3.6 Omitting Glosses - Ablation Study 40
3.6.1 Statistical Gloss Approximation 41

4 Software Product 43
4.1 Problem Formulations . 43

4.1.1 Overall Problem . 43
4.1.2 Subproblems . 44

Page 3 of 80

From Sign Language to Speech using Artificial Intelligence

4.2 The Real-Time Problem . 45
4.3 Backend Architecture . 46

4.3.1 REST . 47
4.3.2 WebSocket . 47

4.4 Efficient Pipeline for Video Streaming and Processing 47
4.4.1 Temporal Downsampling as a Processing Step 49

4.5 Model Integrations . 49
4.5.1 Google Cloud Text-to-Speech API 50
4.5.2 Google Translate API . 51
4.5.3 OpenAI Whisper . 51
4.5.4 Our Proposed Sign2Text Model 51

4.6 Application Architecture . 51
4.6.1 Flutter Development Kit . 51
4.6.2 Firebase Services . 52
4.6.3 Application Interface . 53

4.7 Performance Analysis . 53
4.7.1 Benchmarking the Application 53
4.7.2 Analyzing the Effect of Temporal Downsampling 55
4.7.3 Modeling and Estimation of Execution Time 55

5 Results 57
5.1 Model Performance . 57

5.1.1 Sign2Gloss . 57
5.1.2 Gloss2Text . 58
5.1.3 Sign2Text . 59
5.1.4 Approximating Glosses . 59
5.1.5 Evaluating Real-World Capabilities 60
5.1.6 Effect of Temporal Downsampling on Performance 60

5.2 Application Performance . 61
5.2.1 Sign2Text . 61
5.2.2 Speech2Text . 62
5.2.3 Effect of Temporal Downsampling on Latency 63

6 Discussion 66
6.1 The Sign2Text Model . 66

6.1.1 Reproducibility . 66
6.1.2 Approximating Glosses . 67

6.2 Assessing the Real-Time Problem . 67
6.3 Creating a Real World Application 68
6.4 Accommodating Language Differences 69

6.4.1 Associated Latency . 69
6.4.2 Accumulating Inaccuracy . 69

6.5 Future Research - Towards Commercial SLT 70
6.5.1 General domain SLT . 70
6.5.2 Approaching Real-Time Through Cloud Hosting 71

Page 4 of 80

From Sign Language to Speech using Artificial Intelligence

6.5.3 Benefits of a Modularized Architecture 72

7 Conclusion 73

8 Appendix 77
8.1 Table of Contributions . 77
8.2 Links to Project and Application . 78
8.3 Linear Models for Execution Time - Sign2Text 79
8.4 Linear Models for Execution Time - Speech2Text 80

Page 5 of 80

From Sign Language to Speech using Artificial Intelligence

Abbreviation Description
SLT Sign language translation.
NMT Neural machine translation.
ASR Automatic Speech Recognition.
DGS German sign language.
ASL American sign language.
BSL British sign language.
TSL Turkish sign language.
CSL Chinese sign language.
S3D Separable 3D ConvNet
I3D Inflated 3D ConvNet

Sign2Gloss The process of translating a sign language video into a correspond sequence of glosses.
Gloss2Text The process of translating a gloss sequence into natural language.
Sign2Text Translating a sign language video directly into natural language.

Text2Speech The process of synthesizing text to speech.
Speech2Text The process of translating speech audio into text.

CTC Connectionist temporal classification.
WER Word Error Rate
BLEU Bilingual Evaluation Understudy.

ROUGE Recall-Oriented Understudy for Gisting Evaluation.
REST Representational State Transfer
TCP Transmission Control Protocol

FLOPS Floating point operations

Table 1: Overview of the different abbreviations used throughout the project.

Page 6 of 80

From Sign Language to Speech using Artificial Intelligence

1 Introduction

An estimated 430 million people worldwide suffer from disabling hearing loss [21].
Despite workarounds to mitigate the effects of hearing impairment, over 72 million
people globally use sign language as their primary form of communication [7]. The
ability to communicate is paramount for development, both on an individual and
a societal level, hence why sign language is no less complex than spoken language.
Currently, the communication barrier between signers and non-signers is alleviated
through human translators. However, this process is costly and the availability of
translators is scarce.

Recent advances in Neural Machine Translation (NMT) have enabled the devel-
opment of tools which help reduce language barriers globally. Most prominent is
the transformer architecture introduced in Attention is All You Need [28], which,
since its release, has revolutionized the field of machine learning as a whole. Coupled
with advances in computer vision for video processing and the release of large sign
language datasets, the prospect of bridging the gap between signers and non-signers
through these technologies becomes evermore possible.

In spite of sharing similarities with the task of translating across spoken lan-
guages, Sign Language Translation (SLT) introduces several additional challenges.
For one, the modalities of the input data and the output sequences are different,
given the visual nature of sign language. Sign languages consist of complex syntaxes
of visual gestures. Hand movements, body language, facial expressions, and the con-
text in which signs occur all play a part in determining the precise meaning of the
sentence. There are also significant differences in the grammatical structure of sign
languages as opposed to spoken and written languages which complicates sentence
alignment. For this reason, SLT researchers often utilize glosses2 along with latent
visual representations, as an intermediate step between the video input and the final
translated sentence. This component, particularly, has paved the way for the current
state-of-the-art methods. The current state-of-the-art (SOTA) SLT model [5], dou-
bles the performance when compared to the current best method that omits glosses,
TSPNet [16].

However, the reliance on gloss annotations also has its drawbacks, as only few
datasets contain them. This is due to the annotation procedure requiring expert level
domain knowledge and even then being heavily time-consuming [6]. Several authors,
whose methods are reliant on gloss annotations, have seen substantial improvements
in performance by employing various strategies to combat the lack of training data.
BN-TIN-Transf. [31] alleviates data scarcity by supplementing training with synthet-
ically generated data. The SOTA model [5] achieves state of the art performance by
utilizing transfer learning from generic action sequences, hypothesizing that isolated
signs are a special case of general actions. In spite of these advances, both of these
papers addressed SLT in very narrow domains.

To alleviate the amount of resources required to obtain gloss annotations for
large SLT datasets, several authors focus on developing methods for approximating

2Glosses are word-level transcriptions of signs which are closely associated with the signs mean-
ing.

Page 7 of 80

From Sign Language to Speech using Artificial Intelligence

them. The authors behind BOBSL [1], the largest publicized SLT dataset, train
several models to this end. They propose detecting signs based on mouthing as well
as comparing the similarity between frames with queries from a database of isolated
signs. Additionally, they localize signs in input videos using the attention mechanism
of a transformer trained on SLT data. Another approach focuses on approximating
gloss annotations through natural language translations of sign videos and expert
knowledge regarding the linguistic differences between signed and spoken language
[20].

This project aims to assess the current usefulness of SLT systems in a real world
setting. To this end, we set out to reproduce the current SOTA SLT model [5]
by manually implementing the proposed method from scratch. This method was
chosen due to its high performance on typical natural language processing metrics,
along with considerations of inference time in the context of deploying it in a user
application. Additionally, we create such an application, which allows for two-way
communication between signers and non-signers. During the application design and
development, emphasis was placed on minimizing execution time and latency for all
components required to process user input and use it for model inference.

Additionally, to assess the feasibility of general-domain SLT, an ablation study
testing the approach for circumventing costly expertly annotated glosses in [20] is
performed. Lastly, we evaluate the model’s ability to generalize by testing its per-
formance on unseen samples drawn from the DGS Corpus [10].

The repositories for the code bases developed throughout this project, along
with the model checkpoints and application installation can be found through the
links presented in table 20 in the appendix. Moreover, a table over the individual
contributions for the project can be found in section 8.1 in the appendix.

1.1 Research Questions

In order to address the aforementioned problem statements, the following set of
research questions were formulated, to concretize the objectives of the project.

• How well can we reproduce the state-of-the-art Sign Language Translation
model [5] and is it possible to achieve similar performance, without the depen-
dency on gloss annotated data?

In order to answer this research question, we aim to reproduce the state-of-the-art
model architecture from scratch, solely through the description of the methods and
implementation details formulated in their paper [5]. In relation to this, we build a
GitHub organization, containing a set of repositories for our individual code bases.

Furthermore, we extend these methods to work with datasets not initially con-
taining annotated gloss sequences, by generating them as approximations given a
spoken language annotation.

• How do we design the application pipeline to be used in a real-time setting?

In this context, we direct our focus towards the pipeline going from user input to
model inference and back to the user with the results. This pipeline constitutes the

Page 8 of 80

From Sign Language to Speech using Artificial Intelligence

infrastructure for interfacing with the ML models, and will thus be the determining
factor in terms of execution speed and application latency, along with the models
themselves. When choosing the technologies to implement the application, we pri-
oritize computational efficiency and low communication overhead, since we aim to
construct a piece of software that can be run on consumer level hardware, e.g. a
laptop.

Furthermore, we conduct quantitative tests in order to assess the impact of de-
creasing the temporal resolution3 as part of the application pipeline.

Finally, we evaluate the impact of using hardware acceleration for the ML models.

• How well does the application work in a real world setting?

To access how our application performs in a real world setting, we evaluate whether
the proposed model is able to generalize to the distribution of never before seen
general-domain data.

• How can we accommodate language differences across users and how do these
implementations affect application latency?

To accommodate language differences across users, we implement a pre-existing nat-
ural language translation model, text-to-speech model and speech-to-text model in
the backend model server of our application. To access how these implementations
affect the latency of the application, we evaluate the relative contribution to latency
of each component of the backend model server.

1.2 Report Outline

First, preliminary information about the SLT task is provided. Following this, various
available datasets are presented along with their properties. This highlights the
general availability of resources and serves as prerequisite knowledge for the remarks
on achieving general-domain SLT. Moreover, ethical considerations surrounding SLT
datasets are made.

Hereafter, the underlying methodology surrounding the SLT model, evaluation
metrics and application dependencies are presented. The process of translating a sign
language video into glosses and subsequently into natural language is explained in
detail. Additionally, details surrounding implementation and training dependencies
at various stages of the model pipeline are presented. Lastly, the methodical frame-
work surrounding an ablation study to effect of omitting gloss annotations during
SLT is presented.

Following this, the application and design choices during its development are
presented. The architecture of the application is outlined along with a description
of its components. Furthermore, the process of recording, streaming and processing
video data within the application is explained. Lastly, as a means to reduce execution
time of inference, temporal downsampling of input videos are introduced.

Hereafter, the results primary results of the project are presented and described.
This includes model performance attained when reproducing the SOTA model [5]

3Lowering the frames per second by means of downsampling.

Page 9 of 80

From Sign Language to Speech using Artificial Intelligence

along with the performance when omitting gloss annotations. The performance of
the system in a general-domain setting is also presented. Additionally, execution
time benchmarks for inputs of varying sizes and user-settings are shown.

This is followed by further discussion of the obtained results in conjunction with
the research questions. Here, remarks on reproducibility as well as the ability to
generalize of the method are made. Following this, an assessment of deploying an
SLT application in the real-world setting is made. In this context, the limitations of
current SLT systems and steps to undertake which could lead to high performing,
general-domain SLT models are discussed.

Lastly, the general findings of the project are summarized.

Page 10 of 80

From Sign Language to Speech using Artificial Intelligence

2 Data

This section introduces the domain of SLT and general format of datasets. An
overview of the general data availability is given. Additionally, the datasets used
within this project are described and their properties are summarized. Lastly, ethical
considerations surrounding SLT datasets generally are presented.

2.1 Presentation and Summary Statistics

Sign languages consist of complex visual syntaxes and are completely distinct from
their spoken language counterparts. They contain all of the fundamental properties
of language e.g. word formatting, ordering and pronunciations. Fingerspelling is also
a common component of sign languages often used to indicate proper names as well
as the equivalent word for something in spoken language. Using neural methods to
translate sign language into natural language is no easy feat. For one, the available
datasets are orders of magnitude smaller compared to natural language translations.
Furthermore, the input modality, i.e. video, increases the computational overhead
required to train SLT models significantly. Adding to this, the mapping between
signed sequences and words is generally a complex many-to-many mapping. Hence,
determining the precise meaning of a signed sequence is heavily context dependent.

At a minimum, sign language translation datasets contain RGB videos of signers
along with natural language translations. Some may also include keypoint video
estimates of hand and face movements as well as gloss annotations. Glosses are
approximate word-for-word transcriptions of each sign in a given video, where the
semantic meaning of the given sign is captured.

2.1.1 PHOENIX-2014T

The main dataset used within this project is PHOENIX-2014T [2]. This is due to its
widespread usage amongst SLT practitioners, allowing for meaningful model com-
parisons. The dataset contains signed sequences in the form of RGB clips, along with
their corresponding gloss annotations and natural language translations. The videos
have been collected from German weather forecasts and thus signed sequences and
natural translations are in German sign language (DGS) and German, respectively.
The general data format within SLT is illustrated in figure 1 using a sample from
this dataset.

Page 11 of 80

From Sign Language to Speech using Artificial Intelligence

Figure 1: Sample from the PHOENIX-2014T dataset showcasing the corresponding gloss
annotations and the German translation.

2.1.2 WLASL

Data scarcity is a general issue in the context of SLT. For this reason, the authors
behind the state-of-the-art (SOTA) SLT method [5] pre-train the visual component
of their model on the Word Level American Sign Language (WLASL) dataset [15].
It consists of RGB video clips of single signs along with their corresponding gloss
annotation. Furthermore, this dataset has a large set of diverse signers which could
help assert invariance with respect to the features of the person signing. Since part
of this project focuses on reproducing the model presented in SOTA, WLASL is used
for general domain pre-training prior to training on PHOENIX-2014T.

2.1.3 Kinetics-400

The Kinetics-400 dataset [12] is an action recognition dataset containing 306245
labeled videos of humans performing generic actions. The videos originate from
YouTube and annotations were collected through workers from Amazon Mechanical
Turk. Motivated by the data scarcity in SLT, SOTA argue that recognizing signs
can be considered a special case of action recognition. For this reason, they initialize
the visual component of their SLT model on Kinetics-400.

2.1.4 Properties of the Considered Datasets

To add further context to the datasets used within this project, key properties of
them are presented in table 2 below. The size of splits for WLASL and PHOENIX-
2014T are provided. Additionally, the number of words and glosses that are out of
vocabulary i.e. present in the validation or test set but not in the training set are
reported.

Dataset Size OOV glosses OOV words
train validation test validation test validation test

WLASL 14k 4k 3k 0 0 N/A N/A
PHOENIX-2014T 7096 519 642 12 18 57 58

Table 2: Properties of the datasets used within this project. Their sizes and the number
of words and glosses that are out-of-vocabulary are reported.

Page 12 of 80

From Sign Language to Speech using Artificial Intelligence

As evident from table 2, the considered datasets have a negligible amount of words
and glosses that are out-of-vocabulary. Additionally, the distribution of words and
glosses are reported in figure 2 below.

Figure 2: Gloss and word frequencies for PHOENIX-2014T and WLASL respectively.

Considering the word and gloss distributions illustrated in table 2, it is clear that
WLASL has a relatively uniform distribution. The distribution of glosses and words
for PHOENIX-2014T is more right-skewed. This is to be expected considering that
PHOENIX-2014T contains sentences rather than words and thus reflects the gen-
eral word-frequencies present in language. Supplementary information regarding
PHOENIX-2014T and WLASL can be seen in table 3.

2.1.5 General Data Availability

To provide context about the general data availability in SLT, we present the most
prominent resources currently available in table 3 below.

Name Language4 Vocabulary size Hours Domain-type N.O signers Source
Words Glosses

WLASL ASL N/A 2000 14 General 119 Web
PHOENIX-2014T DGS 2887 1085 11 Specific 9 TV

DGS Corpus DGS 42k 38k ∼50 General 330 Lab
How2Sign ASL 16k N/A ∼80 General 11 Lab
OpenASL ASL 33k N/A 288 General ∼220 Web
MSASL ASL N/A 1000 25 General 222 Web

CSL-daily CSL 2343 2000 23 General 10 Lab
AUTSL TSL N/A 226 ∼25 General 43 Web
BOBSL BSL 78k N/A∗ 1467 General 39 TV

Table 3: Overview of various SLT datasets and their properties. Note that N/A∗ in the
context of BOBSL refers to the use of statistical means to annotate glosses. As such the
gloss vocab size varies with the confidence threshold for annotations.

As evident from table 3, there are several large SLT datasets which span a general
domain. However, the majority of large SLT datasets do not contain glosses, a
prerequisite for training our model. This should come as no surprise considering

4American Sign Language (ASL), German Sign Language (DGS), Chinese Sign Language (CSL),
Turkish Sign Language (TSL) and British Sign Language (BSL).

Page 13 of 80

From Sign Language to Speech using Artificial Intelligence

the resources required to collect gloss annotations. For reference, the authors of
How2Sign [6] report that glosses were annotated at a rate of 90 seconds of video
per hour.5 The BOBSL datasets is an exception to this and resorts to statistical
methods as a means to approximate them [1]. However, BOBSL is under particularly
restrictive licensing and it was therefore deemed unfeasible to obtain clearance for
its use in the context of this project.

2.2 Ethical Considerations

Several ethical concerns are raised when working with sign language datasets. Here,
the concerns deemed most notable surrounding the development of SLT models and
the utilized data are presented.

2.2.1 Privacy

The need for RGB videos with hand movements and visual cues can, without appro-
priate processing, lead to increased surveillance of signers. The lack of anonymity
is also amplified by the fact that sign language communities are generally small,
particularly for low resource sign languages. Additionally, information regarding dis-
abilities of individuals are sensitive features which will be conveyed, unless accounted
for.

2.2.2 Bias

Another potential byproduct of scarcity regarding SLT data is a lack of ethnic cov-
erage, gender diversity and differences in body type of signers. This could lead to
discrimination with respect to performance for different users. As highlighted in ta-
ble 3 several of the SLT datasets, including PHOENIX-2014T, contain few signers.
These concerns could be addressed by progressive pre-training using datasets with
many signers present such as WLASL or MSASL [11].

5Gloss annotations for How2Sign are still underway and in spite of having reached out to the
authors, we were not able to obtain a subset of these annotations.

Page 14 of 80

From Sign Language to Speech using Artificial Intelligence

3 Methods

This sections covers the underlying theory of the considered models along with im-
plementation details. The theoretical framework of this project closely follows the
state-of-the-art (SOTA) SLT model [5]. As the framework consists of three main
stages, namely Sign2Gloss translation, Gloss2Text translation and lastly Sign2Text
translation, these individual steps will be presented sequentially.

Additionally, the various evaluation metrics used to assess the performance of
the models are presented. Lastly, the methodology surrounding the ablation study
assessing the prospect of omitting expertly-annotated glosses is presented.

3.1 Proposed Model Architecture

This section introduces the architecture of the proposed SLT model introduced in [5]
on a high level. Since the model is built to solve a multi-modal task, its architecture
is divided into three components, illustrated in figure 3. The visual component of the
model is responsible for creating a meaningful embedding of given sign videos. The
modality mapper converts the features from the visual domain into language features.
The language component is responsible for translating the language features into
natural language text.

Figure 3: High level overview of the proposed Sign2Text model. The three main com-
ponents of the model are decoupled into the visual component, language component and
modality mapper.

Each model component is responsible for different parts of the sign language trans-
lation. Thus, the three main tasks Sign2Gloss, Gloss2Text and Sign2Text, can be
assigned different model components.

Page 15 of 80

From Sign Language to Speech using Artificial Intelligence

Sign2Gloss. This refers to translating a sign language video into a correspond-
ing gloss sequence. Since the signed sequences are temporally aligned with their
respective gloss annotated translations, the language component of the model is not
needed in this context. Thus, for the Sign2Gloss translation task, only the visual
component is used and trained.

Gloss2Text. This task revolves around translating a gloss sequence into a natu-
ral language translation. During this pre-training procedure, the ground-truth gloss
annotations are given as input. As such, the language component of the model is
trained in isolation for the Gloss2Text task.

Sign2Text. This task refers to translating a sign language video directly into
its corresponding natural language translation. To facilitate this, the visual and
language component are connected using the visual-language mapper. Thus, the
mapper acts as a bridge between the two modalities.

3.2 Sign2Gloss Task

This section covers our approach for translating sign language videos into gloss se-
quences. As mentioned in section 3.1, for the Sign2Gloss task, only the visual com-
ponent of the model is used. This component of the model consists of a convolution-
based "visual backbone", tasked with extracting visual features from the input video,
followed by a translational head network which maps these features to glosses.

As a means to combat the scarcity of within-domain data, the visual backbone
is pre-trained multiple times, before addressing the Sign2Gloss task. Initially the
visual backbone is pre-trained on the general domain Kinetics-400 [12] dataset. This
is followed by training on the general domain word-level dataset, WLASL [15], and
lastly the within-domain sequence-level PHOENIX2014-T dataset [2]. This sequen-
tial pre-training procedure is shown in figure 4.

Figure 4: Overview of the sequential training procedure of the S3D backbone. Both
Kinetics-400 and WLASL remains general-domain pretraining, while PHOENIX2014-T is
within-domain.

The various dependencies as well as implementation details for the different training
procedures outlined in figure 4 are presented in the following.

Page 16 of 80

From Sign Language to Speech using Artificial Intelligence

3.2.1 S3D

Following [5], we employ the Seperable 3D ConvNet (S3D) [29] as the visual backbone
of the model. This model has been shown to provide consistently high performance
across video datasets and requires fewer FLOPS6 compared to other CNN architec-
tures for video tasks. The S3D model is a modification on the Inflated 3D ConvNet
(I3D) model [4].

I3D is based on the idea of pretraining 2D convolutional layers on an image
dataset to learn spatial features. Then, copies of the resulting 2-dimensional kernels
are stacked on top of each other, so as to "inflate" them into 3-dimensional ker-
nels. The 3-dimensional kernels are then trained further on videos to learn temporal
features as well. The end result is thus spatio-temporal 3D convolutional layers.

S3D abbreviates "separable 3D convolutions", which hints at the intuition be-
hind the model. S3D separates the 3D spatio-temporal convolutions in I3D into 2D
convolutions for the spatial features and 1D convolutions for the temporal features,
and applies them in sequence.

Concretely, each 3D convolutional layer with kernel f3D = [kt, k, k] is separated
into two 3D convolutional layers with kernels f2D = [1, k, k] and f1D = [kt, 1, 1],
k, kt ∈ N. The singleton dimensions mean that these correspond to 2D and 1D
convolutions, respectively, despite being defined in 3 dimensions.

Naturally, the separation of the 3D convolutions reduces the computational com-
plexity of the model substantially.

Surprisingly however, the S3D authors observe improvements in performance
when comparing S3D with I3D on both the Kinetics-400 [12] and Something-Something
[8] datasets. They hypothesize that the separation of spatio-temporal convolutions
reduces overfitting whilst retaining the quality of representations. This is backed
up by the observation that simply reducing the number of model parameters of I3D
does not yield an increase in performance. The full architecture of S3D is depicted
in figures 5 and 6 below.

Figure 5: The full S3D architecture. The sub-blocks SepConv and SepInc are visualized
in figure 6. Note that for our Sign2Gloss as well as full Sign2Text model pipeline, we only
use blocks 1 through 4. KC denotes the convolution kernel of the layer.

6Floating point operations.

Page 17 of 80

From Sign Language to Speech using Artificial Intelligence

(a) The separated con-
volutional block. (b) The separated inception block.

Figure 6: Sub-blocks of S3D. KC denotes the convolution kernel of the layer.

3.2.2 Classifier

To allow for predicting a single gloss of a given sign language video from the word-
level WLASL dataset, the classification head of S3D is used. Firstly, average pooling
is applied on the spatial dimension of the output of the final convolutional block of
S3D, yielding a feature vector ŷ ∈ R. Following this, a single linear layer maps these
features onto the gloss vocabulary as output logits. Lastly, the softmax function is
applied to ŷ followed by argmax to obtain a gloss prediction corresponding to the
input video.

3.2.3 Implementation Details - WLASL (Single Gloss)

Our pre-training procedure on WLASL largely follows [5]. The model is initialized
with weights trained on the Kinetics-400 [12] and hereafter the model was trained
for a total of 133 epochs using cross-entropy as the loss function. We use a batch size
of 6, SGD as the optimizer with a momentum of 0.9 and an initial learning rate of
0.1. During training, we convert all videos to images, normalize them such that pixel
values lie between [0, 1], and re-sample temporally to obtain a sequence length of 64.
Several data augmentations are applied during training consistently for all images
in a video. These include random horizontal flipping, random cropping to 224x224
pixels, random rotation within the interval [−5◦, 5◦]. Furthermore, a learning rate
scheduler is used decaying the learning rate by a factor of 10 if no improvement in
validation loss has occurred within 5 epochs. During inference, all frames of each
input video are used. Additionally, random horizontal flipping and center cropping
to 224x224 pixels is applied.

We find that the validation loss is saturated at epoch 91 and thus the weights of
this model are used for subsequent fine-tuning.

Page 18 of 80

From Sign Language to Speech using Artificial Intelligence

3.2.4 Head Network

To allow for predicting a continuous sequence of glosses given a sign language video,
we replace the last convolutional block of S3D as well as the previously mentioned
classifier with a head network. Its architecture closely follows the one presented in [5].
As input, the head network takes a latent representation of the original sign language
video z ∈ RN×T/4×832 corresponding to the output of the penultimate convolutional
block of S3D. Here N denotes the batch size and T is the number of frames in the
video.

The first component of the head network is a projection block containing a linear
layer followed by batch normalization and ReLU activation. Hereafter, positional
encoding is applied as shown in equations 11 and 12 followed by a dropout layer.

Subsequently, layer normalization is applied and the input is passed through a
convolutional block. This block consists of two convolutional layers with a kernel
size of 3, ReLU activation and dropout in between. The first convolutional layer
outputs features of dimension 2048 and the final output of this block has dimensions
N × T/4 × 512. Additionally, resiudal connection is applied between the output of
the projection layer and convolutional block.

As its final component, the head network contains a translation layer. Here, layer
normalization is first applied, followed by a linear projection from 512 to the size of
the gloss vocabulary, K. The complete architecture of the vision model is summarized
in figure 7 below.

Recall that the goal of the Sign2Gloss task is to predict a continuous gloss se-
quence given an input video. To facilitate this, we seek to temporally align the
output features of the head network using the sentence level gloss labels. To this
end, we employ Connectionist Temporal Classification (CTC) loss to supervise the
visual encoder and CTC decoding for predicting gloss sequences. We will go into
detail with CTC in the next section.

The architecture of the model responsible for the Sign2Gloss task is summarized
in figure 7 below.

Page 19 of 80

From Sign Language to Speech using Artificial Intelligence

(a) Architecture of the the vision model.

(b) The ConvBlock
composite function
from (7a).

Figure 7: The complete Sign2Gloss architecture. Here T denotes the number of frames in
the input video. At each step of the pipeline, dimensions are annotated should they change
relative to the input. S3D backbone refers to blocks 1 through 4 of the architecture depicted
in figure 5.

3.2.5 CTC Loss and Decoding

This section covers the theoretical framework surrounding CTC loss as well as de-
coding. Crucially, the objective of CTC is to find the most probable output gloss
labeling for a given input. This corresponds to the labeling where the set of paths
through the search space that lead to it have the highest cumulative probability.

A key assumption for CTC loss is that the order in which the labels are observed
in the input signal is consistent with the order of the target labelings. This is exactly
the case for our gloss labels, but not for our natural language labels. This detail is
unfortunately also what limits this method, since the need for continuous gloss labels
is the bottleneck for acquiring larger datasets.

CTC Problem Formulation. To use CTC, softmax is applied to the output of
the translation layer returned from the head network. We denote this joint network
as Nw. We interpret the output from Nw as a τ = T

4 long sequence of probability
distributions of labels - one per time index. Note that our temporal dimension has
been aggregated by the convolutional operations in Nw, meaning that each index no
longer directly corresponds to a single frame in the video.

We index the sequence of probability distributions y as
[
ytk
]
, meaning the proba-

bility of observing label k at time t. We will denote the input data used to compute

Page 20 of 80

From Sign Language to Speech using Artificial Intelligence

y as x, and the target label sequence for x as z.

Since we want a way to handle indices in the sequence where no gloss is being
signed, we define an alphabet A′ = A ∪ {blank}, where A is our gloss vocabulary
and blank denotes a label for the case of no gloss. A′ will be used in an intermediate
representation for computing the labeling probabilities.

For translating between our intermediate representation in A′ and our target in
A, we let B denote a map that filters blank-labels and collapses adjacent repeated
labels in a sequence, e.g. B ([a, b, b, blank, c, b,]) = [a, b, c, b].

We can now express the probability of a given label sequence l ∈ At by summing the
probabilities of each possible alignment mapping to it from (A′)≥t. We write this as

p(l|x) =
∑

π∈B−1(l)

p(π|x) (1)

Here, p(π|x) denotes the probability of a label sequence π ∈ B−1(l) ⊆ (A′)≥t, i.e.
any label sequence that is mapped to l by B. This probability can be expressed as a
product of all the individual probabilities in the sequence:

p(π|x) =
τ∏

t=1

ytπt
(2)

As the set B−1(l) quickly becomes extremely large, p(l|x) is clearly no trivial compu-
tation. Therefore, we will introduce a dynamic programming algorithm that includes
only the needed terms when performing the computation.

Tractable computation of label sequence probability. The algorithm in ques-
tion is the CTC Forward-Backward Algorithm and is first described in [9].

We first index a target label sequence l of length r by its first p and last p symbols,
as l1:p and lr−p:r, respectively.

Then we modify the sequence to allow blank labels as start and end tokens as
well as in between all of the labels. We denote this modified sequence as l′. The
modified sequence will have length |l′| = 2|l|+ 1.

We now consider a graphical model of l′, where the nodes are the labels and the
outgoing transitions signify the possible postfixes. The graph is partially ordered
according to the time and ordering of the ground truth label.

A visualization of the general graph can be seen in figure 8. Furthermore, an
example of such a graph for the sequence l′ corresponding to l = [NAECHSTE,
WOCHE, REGEN] is illustrated in figure 9.

Page 21 of 80

From Sign Language to Speech using Artificial Intelligence

Figure 8: Visualization of the partially ordered graph for a gloss sequence l′ over time
length τ .

Figure 9: Visualization of the partially ordered graph corresponding to all paths that map
to the gloss sequence [NAECHSTE,WOCHE,REGEN] given time horizon τ = 6. Uncon-
nected notes correspond to individual labels in impossible paths, given the label sequence
l′.

Page 22 of 80

From Sign Language to Speech using Artificial Intelligence

Note that the unconnected nodes represent labels that have probability 0 at the
given time index. In these cases, the unconnected notes represent labels the sequence
cannot start in and those where the full sequence is no longer reachable inside the
timesteps.

Recalling that ytk is the probability of observing label k at time t, we can now
define the forward variables, α, and backward variables, β, as

αt(s) =
∑

π ∈ (A′)τ :

B(π1:t) = l1:s

t∏
t′=1

yt
′
πt′

(3)

βt(s) =
∑

π ∈ (A′)τ :

B(πt:τ) = ls:|l|

τ∏
t′=t

yt
′
πt′

(4)

These variables express the total probability, at time t, of labels l1:s for αt(s) and ls:|l|
for βt(s). They are the basis for constructing a recursive relationship that allows us
to include only probabilities which we cannot be certain are zero in the computation
of p(l|x).

Note that the probability of l can be found as the sum of l′ with and without a
blank at the final timestep:

p(l|x) = ατ (|l′|)︸ ︷︷ ︸
blank at τ

+ατ (|l′| − 1)︸ ︷︷ ︸
l|l| at τ

(5)

From the graphical model we can derive the recursion initialization rules for α, from
the probabilities at t = 1, as

α1(1) = y1blank

α1(2) = y1l1

α1(s) = 0, ∀s > 2

and for β, from the probabilities at t = τ , as

βτ (|l′|) = yτblank

βτ (|l′| − 1) = yτl|l|

βτ (s) = 0, ∀s < |l′| − 1

Furthermore, we can express the recursion rules for computing αt(s) and βt(s) for a
given s. For α:

αt(s) =

{
α̂t(s)y

t
l′s

l′s = blank or l′s−2 = l′s

(α̂t(s) + αt−1(s− 2)ytl′s) otherwise

where
α̂t(s) = αt−1(s) + αt−1(s− 1)

Page 23 of 80

From Sign Language to Speech using Artificial Intelligence

Figure 10: Visualization of the graph transitions corresponding to the sequences considered
when calculating the forward variable αt(s) (red transitions) and backward variable βt(s)

(blue transitions) for the node Ω = (t, ls) = (3,WOCHE) from the graph in figure 8
.

For β:

βt(s) =

{
β̂t(s)y

t
l′s

l′s = blank or l′s+2 = l′s

(α̂t(s) + αt+1(s+ 2)ytl′s) otherwise

where
β̂t(s) = βt+1(s) + βt+1(s+ 1)

Figure 10 contains a visualization of paths considered in calculating the forward and
backward variables.

Next, we use (3) and (4) to combine the forward and backward variables into a
useful result:

αt(s)βt(s) =

∑

π ∈ (A′)τ :

B(π1:t) = l1:s

t∏
t′=1

yt
′
πt′

︸ ︷︷ ︸
Sum over subset of (A′)τ

that map to l1:s

∑

π ∈ (A′)τ :

B(πt:τ) = ls:|l|

τ∏
t′=t

yt
′
πt′

︸ ︷︷ ︸
Sum over subset of (A′)τ

that map to ls:|l|

=
∑

π ∈ B−1(l) :

πt = ls

ytls

τ∏
t′=1

yt
′
πt′

︸ ︷︷ ︸
Sum over all paths π

that map to l

and have πt = ls

Page 24 of 80

From Sign Language to Speech using Artificial Intelligence

Rearranging this and using (2), we obtain

αt(s)βt(s)

ytls
=

∑
π ∈ B−1(l) :

πt = ls

p(π|x) (6)

This means that the sum of probabilities of π that map to l and has ls at timestep
t can be expressed as the product of αt(s) and βt(s) divided by the probability of
observing label ls at time t.

Finally, we can insert (6) into (1) to express the probability of l from αt(s) and
βt(s):

p(l|x) =
∑

π∈B−1(l)

p(π|x) =
τ∑

t=1

|l|∑
s=1

αt(s)βt(s)

ytls
(7)

This last expression (7) is crucial, as it provides a computationally tractable way
to compute the probability of a labeling l given input data x, using the output
sequences of probability distributions from our visual head network. In practice, the
α and β variables are scaled to avoid numerical and computational issues, but this
just involves some simple division terms along the way [9].

The probability can now be used for maximum likelihood training, i.e. minimiz-
ing the negative log-likelihood.

CTC Training Objective. For maximum likelihood training, we wish to max-
imize the likelihood of our visual encoder correctly predicting the ground truth label
sequences, given all their corresponding paths.

Recall that Nw is the joint network that outputs a τ long sequence of probability
distributions. Denoting our distribution of training examples as S ⊂ Dx×z, we can
express the maximum likelihood objective OML as minimization of

OML(S,Nw) = −

 ∑
(x,z)∈S

log(p(z|x))

Since the training examples (x, z) ∈ S are independent, a partial derivative corre-
sponding to a component in the gradient can be expressed as

∂OML({(x, z)},Nw)

∂ytk
= −∂ log(p(z|x))

∂ytk
(8)

Using the chain rule on (8), we get

∂OML({(x, z)},Nw)

∂ytk
= − 1

p(z|x)
∂p(z|x)
∂ytk

(9)

We can express ∂p(z|x)
∂ytk

by setting l = z in (7) and taking the partial derivative w.r.t.
ytk:

∂p(z|x)
∂ytk

=
∂

∂ytk

 τ∑
t=1

|z|∑
s=1

αt(s)βt(s)

ytzs

 = − 1

(ytk)
2

∑
s∈{s′:zs′=k}

αt(s)βt(s) (10)

Page 25 of 80

From Sign Language to Speech using Artificial Intelligence

Here,
∑

s∈{s′:zs′=k}
is a sum over the set of positions where k occurs.

Finally, we can set z = l in (5) and insert it, as well as (10), into (9) to differentiate
the objective function and thus obtain the error signal propagated back into the head
network.

For a given data point (x, z), this becomes:

∂OML({(x, z)},Nw)

∂ytk
=
(
ατ (|z′|) + ατ (|z′| − 1)

)−1 1

(ytk)
2

∑
s∈{s′:zs′=k}

αt(s)βt(s) □

CTC Decoding. After successfully training the network with CTC loss, the dis-
tance between the output gloss sequence probabilities and the ground truth glosses
will be minimized. Hereby, we hope that these output distributions will align with
the distribution of never before seen data.

We now want to turn these probability distributions into the most probable gloss
sequence, such that these can be validated with the ground truth glosses.

Using the notation of the previous section, we can express the most probable
gloss sequence given the network output as

h(x) = argmax
l∈A≤τ

p(l|x)

Once again, this is non-trivial to compute, as the space we are searching when
computing argmax quickly grows extremely large as vocabulary A and time horizon
τ increase in size.

This can be done naïvely using the computationally trivial greedy decoding
scheme Φgreedy, which gives the concatenation of the most probable gloss for each

timestep, i.e. Φgreedy yields
[
∀t ∈ τ : yt∗ = argmax

k
ytk

]
.

However, Φgreedy has the assumption that the most probable path corresponds
to the most probable labeling, which is not necessarily the case. As can be seen in
figure 9, we can trace multiple paths through the probability distributions that map
to the same labeling via B. The true probability of a labeling is the sum of all of
these, as can be seen in (1).

An example of the greedy decoding algorithm giving a result differing from the
true most likely labeling can be seen in the appendix files under CTC_decoding.ipynb.

However, since we do not want to compute the probability of all possible labelings
for each sequence to find the most probable one, we use a "beam search" algorithm.
What beam search does essentially, is to start with an empty sequence of prefixes
and their probabilities σ, and then iterate over each timestep t = 1, 2, . . . , τ . For
each step, we compute the probabilities of extensions of the prefixes in σ by the
labels in our vocabulary and add them to σ. In order to keep the computational
cost down, σ is usually pruned to support a constant number of prefixes at the end
of each iteration.

The search algorithm used for the CTC decoding is prefix search, a special case
of beam search. Prefix search decoding modifies the forward-backward algorithm
for exactly this purpose. We exploit that the forward variable αt(s) already has a

Page 26 of 80

From Sign Language to Speech using Artificial Intelligence

recursive relation to describe the probability of the prefix l1:s at time-step t.

To sum it up, what all of these steps give us is an efficient computation of the
most probable labeling l, i.e. the most probable gloss sequence, for a given input
video x.

3.2.6 Implementation Details - PHOENIX-2014T (Gloss-Sequence)

In alignment with the SOTA model [5], we train our visual encoder using the AdamW
optimizer with a weight decay and initial learning rate of 10−3. Additionally, cosine
annealing is used as the learning rate scheduler with Tmax = nepochs. The model was
trained for 100 epochs with a batch size of 6 using CTC loss as the objective.

During training, all images are initially upsampled pixel-wise to 298x240 using
bi-linear interpolation. After this, the image is normalized such that pixel values
lie between [0,1]. This is followed by color jitter where we randomly adjust the
brightness, contrast and saturation all within the range [0.6, 1.6], and the hue within
the range [-0.1, 0.1]. Hereafter, a 240x240 center crop is taken to ensure that hand
and face movements remain present in the final video. Follwing this, the video is
rotated randomly with a range of [−5◦, 5◦] followed by random cropping to 224x224.

During inference the images are upsampled to 298 x 240, normalized and hereafter
a 224 x 224 center crop is taken.

3.3 Gloss2Text Task

This section covers the methodology surrounding translation of a gloss sequence into
natural language. As mentioned in section 3.1, only the language component of the
model is utilized and trained for this task. As the language component of the model
we use mBART [18], a denoising autoencoder, in alignment with SOTA [5]. This
model is a variant of BART [14] that is pre-trained on CC-25 [18], a large corpus of
multilingual data. BART consists of a bi-directional encoder and an autoregressive
decoder. The underlying architecture of BART is a sequence-to-sequence transformer
as first proposed in Attention is All You Need (AiAYN) [28]. The only deviations
from the original architecture are that GeLU is used as the activation function as
opposed to ReLU and the latent model dimension and number of layers are increased.

3.3.1 Transformers

Transformers take sequential data as input and, through learnable parameters, they
have the ability to decide how much different parts of an input sequence should
contribute to the generated output sequence.

The first step in the transformer pipeline is tokenization of the input sequence.
Here sub-words in a sentence are mapped to integers, corresponding to their row
indices in an embedding matrix. The tokenized input sentence is then projected
using the embedding matrix to obtain an embedding vector for each token in the
input sequence.

Let x̃ ∈ RN×K and E ∈ RK×dmodel denote a one-hot encoded, tokenized sequence
and an embedding matrix, respectively. Here K denotes the vocabulary size, N is

Page 27 of 80

From Sign Language to Speech using Artificial Intelligence

the length of the input sequence and dmodel is the latent model dimension. The em-
bedded sequence, in matrix-form with embeddings as rows, is then given as z = x̃E.

Positional Encodings. One of the later steps in the Transformer pipeline, self-
attention, is permutation invariant. This means that no temporal information from
the ordering of the sequence is retained. Naturally, this is undesirable in the context
of NLP since the ordering of the input contains a lot of syntactical and semantic
information. Thus, in order to propagate information about the relative positions of
elements in the input sequence, we add positional encodings to z. Here [28] proposes
to use sinusoidal functions on the form:

PEp,2i+1 = cos
(p

100002i/dmodel

)
(11)

PEp,2i = sin
(p

100002i/dmodel

)
(12)

Where p ∈ {0, 1, . . . N − 1} denotes the position in the sequence, i.e. row index in z,
and i ∈ {0, 1, . . . , dmodel−1} refers to the embedding dimension. Since the positional
encodings remain constant across input sequences, it allows the model to learn the
positions as well as relative distances between elements. Hence, the input to the
transformer becomes x = z + PE.

Below, in figure 11, is a plot of the positional encodings to visualize how they are
providing positional information.

Figure 11: Visualization of the positional encodings. Note that the plot only depicts 128

embedding dimensions, whereas our model has 1024.

Attention. The backbone of the transformer architecture is the attention mech-
anism, in particular multi-head attention. To understand this, we first consider
self-attention, i.e. what can be understood as single-head attention in this context.
Given an embedded input sequence x ∈ RN×dmodel , we compute three matrices,

Page 28 of 80

From Sign Language to Speech using Artificial Intelligence

namely the query, key and value matrices, as:

Q = xWQ K = xWK V = xWV

Here, WQ,WK ,WV ∈ Rdmodel×dk are learned projection matrices. Using these, the
attention operation is computed as:

Attention(Q,K,V) = softmax
(QK⊤
√
dk

)
V (13)

Here the term QK⊤ is a square matrix with dimension N containing the relevance
score for each element in relation to every other element in the input sequence. These
values are scaled by 1√

dk
to make the gradients more stable for large values of dk.

The softmax term converts the scores to a relative importance weighting, summing
to exactly 1, and by taking the dot product with V, a weighted average over the
values is obtained. A visualization of the self-attention mechanism for a given gloss
sequence is provided in figure 12.

Page 29 of 80

From Sign Language to Speech using Artificial Intelligence

Figure 12: Visualization of self-attention applied on our example gloss sequence
[NAECHSTE, WOCHE, REGEN]. The values for qikj in pane 2 are made up, and dk
is selected to be 64 in line with [28]. Note that the dimension of the "vectors" is not speci-
fied - only the relative dimensions are important.

Multi-head Attention. Multi-head attention improves on the attention mechanism
by computing self-attention, as seen in (13), for h attention heads each with different
sets of projection matrices {WQ

i ,W
K
i ,WV

i }hi=1. Hence, h attention matrices Ai ∈
RN×dk are obtained and hereafter they are concatenated into Ã ∈ RN×h·dk . The
final output of multi-head attention is then a linear projection given as

MultiHeadAttention(Ã) = ÃWO, WO ∈ Rh·dk×dmodel (14)

Having multiple heads, allows the attention layer to learn several latent representa-
tions thereby enhancing the models ability to relate and connect different parts of
the input. A key feature is also that attention for each of the heads can be computed

Page 30 of 80

From Sign Language to Speech using Artificial Intelligence

in parallel, leading to massive computational advantages over sequential model ar-
chitectures.

Encoder. The transformer architecture is composed of an arbitrary amount of en-
coder stacks all of which contain of two layers. In between each layer, a residual skip
connection is applied, followed by layer normalization. Hence, for an input xin and
output xout of a layer, the computation is LayerNorm(xin + xout). The first layer of
the encoder is multi-head attention and the second is a standard fully-connected feed
forward neural network with two layers, ReLU activation in between and a hidden di-
mension of dff . The output of the feed forward network is a matrix of size RN×dmodel .

Figure 13: Diagram of the transformer encoder. FFNN denotes a feed forward neural
network.

Decoder. The decoder of a transformer shares the components and structure of

Page 31 of 80

From Sign Language to Speech using Artificial Intelligence

the encoder with the exception of a third layer that computes multi-head attention
over the final output of the encoder stack. Also, to ensure that the model does not
attend to parts of the input at future time-steps, the decoder input is offset by one
position and masking is applied. The latter is implemented as a sum of the score
matrix (see Figure 12) and a strictly upper triangular matrix with −∞ in its non-
zero indices. This corresponds to setting subsequent time-steps to −∞ relative to the
current time-step when applying softmax during attention, as each row corresponds
to a later time-step.

The masking step is illustrated in Figure 15.

Figure 14: Diagram of the transformer decoder. FFNN denotes a feed forward neural
network. Yfinal denotes the output embedding sequence from the encoder stack. Encoder-
Decoder Attention denotes the multi-head attention over the final output of the encoder
stack. The decoders each output embeddings one at a time. Each decoder uses the sequence
of previous outputs of the decoder below it in the stack as inputs. The first decoder uses the
previous outputs of the full decoder stack, however - in the first step, it receives a beginning-
of-sentence token, corresponding to a ’right-shift’.

Page 32 of 80

From Sign Language to Speech using Artificial Intelligence

Figure 15: Visualization of the masking step in the decoder masked self-attention. Step 2
refers to the steps in figure 12.

Finally, the architecture of the transformer is summarized in figure 16 below. Here,
the relation between encoder and decoder stacks is illustrated, along with how they
work together in the context of sequence to sequence mapping.

Figure 16: Diagram of the structure of the full transformer and how the encoder and
decoder stacks are connected.

Page 33 of 80

From Sign Language to Speech using Artificial Intelligence

3.3.2 mBART

As noted earlier, mBART consists of a bi-directional encoder (stack) and an autore-
gressive decoder (stack).

In this context, bidirectionality is simply an explicit reference to the fact that
attention is computed for the entire input sequence at once within each encoder.
This is identical to the procedure described above and outlined in AiAYN [28].

The decoder being autoregressive refers to the fact that the decoder stack outputs
a single embedding at a time, which is then fed back into the bottom-most decoder.
This means that the each new output is conditioned on (all of) its previous outputs.

The parameters of the mBART architecture are summarized in table 4 below.

Parameter Value Description
dmodel 1024 Embedding dimension
dff 4096 Latent dimension in feed forward networks.
dk 64 Scaling factor in self-attention
h 16 Number of attention heads in Multi-head attention.

nstack 12 Size of stacks of encoders/decoders.
nparams ∼680M Total number of model parameters.

Table 4: The parameters of mBART-cc25, used as the language component for our model.

In spite of the architectural similarities between mBART and AiAYN [28], there
are also notable differences in their respective training procedure. mBART follows
BART [14] in terms of pre-training objectives. Thus, the model is pre-trained to
reconstruct documents, purposefully corrupted by noise. This allows mBART to
achieve high performance on both the sentence level, as well as document level.

One of the pre-training tasks is text infilling, where spans of text are randomly
sampled from the input and replaced with a single <MASK> token. The length
of each span is determined by drawing samples from a Poisson distribution with
λ = 3.5. The model is then tasked with predicting the correct word(s) in each span.

Sentence permutation is also used which involves splitting a document into sen-
tences and randomly shuffling them. Then, the model is tasked with reconstructing
the correct order of sentences.

During pre-training, the input consists of several sentences from the same doc-
ument each separated by an end-of-sentence <EOS> token. Sentences are sampled
from a document until either the maximal sequence length of 512 is reached or the
document has ended. To mark the end of an instance, a language id <LID> token
is added as the final token, potentially followed by padding.

Let D = {D1, ...,Dn} denote a multilingual corpus of text where Di is a mono-
lingual document. The objective of the training is then to maximize the following
w.r.t. the model

L(x) =
∑
Di∈D

∑
x∈Di

ln(P (x|g(x)) (15)

Where x is a span of text in Di and g is a noising function for corrupting the
input text. Hence, g can either correspond to text infilling or sentence permutation.

Page 34 of 80

From Sign Language to Speech using Artificial Intelligence

During pre-training, the authors of mBART investigate the effect of pre-training
on different languages. The variant of mBART we use has been pre-trained on all
languages present in the cc-25 dataset [18]. During fine-tuning, the encoder of the
model is given an single input sentence x in the source language with the format:

x <EOS> <LID>

The decoder is tasked with autoregressively predicting the next token as described
in the previous section. The input to the decoder at the first time-step is the <LID>
corresponding to the target language. The format of the ground-truth translation y
in this context becomes

<LID> y <EOS>

When fine-tuning mBART for NMT, the cross entropy between complete output of
the decoder and ground-truth translation is minimized.

3.3.3 Beam Search Decoding

To find an optimal translation given an input video in a computationally efficient
manner, we once again employ a method of beam search decoding. This variation
beam search can be thought of as a pruned BFS where the branching factor is
constrained to a fixed number of competing hypotheses, k. Let N denote the length
of a sequence and e the output of the encoder. The goal is to find a sequence of
words y that maximizes ΠN

t=1P (yt|y1, ..., yt−1, e).
At each time-step t, the algorithm outputs the k most probable hypotheses con-

ditioned on the previously predicted words y1, ...yt−1 and e. Recall that the decoder
of a transformer is autoregressive and computes exactly this . Hence, at each time-
step, the decoder computes Pθ(yt|y1, .., yt−1, e) where θ denotes its parameters. Pθ

is thus used to score the hypotheses at each time-step of the beam search decoding
process.

Page 35 of 80

From Sign Language to Speech using Artificial Intelligence

Algorithm 1 Beam search decoding
Goal: Find a sequence Y = {y1, ..., yN} maximizing ΠN

t=1P (yt|y1, ..., yt−1, e)
Recall the decoder computes Pθ(yt|y1, .., yt−1, e), where θ denotes its parameters.
Let k ∈ N denote the number of competing hypotheses.
Let ◦ denote a string concatenation operation.
Let e denote the output of the encoder of the model.
Let V denote the vocabulary of the language model.
Let Y denote a set {yi}ki=1 of sequences initialized with the the BOS token.

expandHypotheses(Y , k, e)
kbest ← ∅
scores← {} // define empty map
for i from 1 to k do

for v in V do
scores[Y k

t ◦ v]← Pθ(v|Yk, e)
scores′ ← argsort(scores.values()) // sort scores in descending order
for j from 1 to k do
sequence, score← scores′.pop()
kbest.add(sequence) // add sequence

return kbest

BeamSearch(e, k)
for t from 1 to nmax do
Y ← expandHypotheses(Y, k, e)
if ∀ Yt

k = <EOS>
break

return Y

3.3.4 Implementation Details PHOENIX-2014T

In alignment with the SOTA model [5], we implement a transformer based translation
network using the mBART-cc25 model. Hence, this is a variant of mBART that is
pre-trained on all source languages present in its training data.

To alleviate computational overhead the embedding matrix of mBART is pruned.
Hence, all rows of the embedding matrix corresponding to tokens that are not present
in the vocabulary are removed. Additionally, the embedding matrix is frozen during
training in alignment with [5], to retain semantically meaningful embeddings.

Individual glosses may be split up into several tokens. As a result of this, the
tokens corresponding to a single gloss will have several associated embedding vectors.
Prior to being inputted to the encoder, the mean of the embedding vectors corre-
sponding to a single gloss is computed. Hence, we end up with a single embedding
vector for each gloss. Additionally, the output layer is pruned such that weights that
do not correspond to tokens in the vocabulary are removed.

As input to the encoder, the model receives a sequence of gloss-embeddings,
computed in accordance to the description above. Following the conventions of
mBART [18], a new language code is introduced for glosses "de_GLS" after the

Page 36 of 80

From Sign Language to Speech using Artificial Intelligence

<EOS> token. This serves to help the model distinguish between input modalities.
Additionally, label smoothing is applied for the targets in the objective function

in alignment with the implementation of [5]. Hence, for a one-hot encoded target
sequence y ∈ NN×K , the probability mass of the target word becomes 1 − s where
s < 1 denotes the smoothing factor. For other words in the vocabulary, the prob-
ability mass is set to s

K and for padding tokens the probability mass is 0. During
training we minimize the Kullback-Leibler divergence (KL divergence) between the
predicted sequence and smoothened target sequence. Prior to being inputted to the
loss function, the sequences of probability distributions are flattened, meaning that
the rows of the matrices x and y are stacked yielding vectors of dimension RN ·K .
This can be precisely described as applying the matrix operator vec⊤7.

The KL divergence can be described by

LKL(x,y) =
1

N

N∑
i=1

vec⊤(y)i · ln
(vec⊤(y)i

vec⊤(x)i

)
(16)

where N denotes the padded sequence length and x ∈ RN×K y ∈ RN×K are the
prediction and target respectively.

The model is trained on the Gloss2Text task for 80 epochs, with a batch size
of 8. The AdamW optimizer is used with an initial learning rate of 10−5, a weight
decay of 10−3 and a linear learning rate scheduler. As a learning objective, the KL
divergence loss function is applied with a smoothing factor of 0.2. In order to prevent
overfitting, a dropout rate of 0.3 along with an attention dropout of 0.1.

When evaluating model performance at each epoch, beam search decoding is used
with a beam size of 4 and length penalty of 1. The weights of the model with the
highest BLEU-4 score on the validation set are used for subsequent fine-tuning.

3.4 Sign2Text Task

This section covers bridging the modalities of video and text. Doing so allows for
directly translating a sign language video into text and thus circumvents the need
for a cascading approach. As mentioned in section 3.1, the entire proposed model,
namely the visual component, language component and modality mapper is utilized
for this task. Additionally, this section outlines the full translation pipeline as well
as details surrounding its training.

3.4.1 VL-mapper

As noted earlier, visual cues are a factor when it comes to translating sign language
to natural language. Therefore, information will likely be lost when a cascading
approach is taken i.e. translating an input video into a corresponding gloss sequence
and subsequently translating this into text. For this reason, we implement a Visual-
Language mapper (VL-mapper) in alignment with [5]. It consists of two linear layers
and ReLU activation in between. The VL-mapper takes gloss representations as

7Let A = [ai,j] be an m× n matrix, where i = 1, . . . ,m and j = 1, . . . , n.

Then vec⊤A =
[
a1,1 a1,2 . . . a1,n a2,1 . . . am,n

]⊤
∈ Mmn.

Page 37 of 80

From Sign Language to Speech using Artificial Intelligence

Figure 17: Overview of the full proposed Sign2Text pipeline. For simplicity the three com-
ponents of the model are decoupled into the visual component, the translation component
and the modality component connecting the two modalities. Both the visual encoder and
translation encoder-decoder are pretrained as described in earlier sections.

input i.e. latent features of dimension z ∈ RT/4×512. That is, the input to the VL-
mapper is the output of the convolutional block in the head network (see figure 7a).
The first layer projects the features to dimension dmodel = 1024, and the last layer
does not change the dimensionality. This effectively corresponds to learning a new
embedding matrix for the visual domain as opposed to tuning the one of mBART
trained to encode the semantics of text input.

3.4.2 Full Model Pipeline

With the addition of the VL-mapper, we are able to directly translate a sign lan-
guage video into text. First, the video is fed through the S3D backbone yielding a
latent representation z ∈ RT/4×832. This is then passed through the convolutional
block of the head network changing the latent dimension to 512. Hereafter, the
VL-mapper converts this dimension to 1024, thereby matching dmodel of mBART.
Lastly, the embedded sign language video is passed through the mBART pipeline
yielding a probability distribution P ∈ RN×K where N is the length of the outputted
sequence and K is the size of the vocabulary. This sequence is then decoded into a
natural language translation through beam search decoding. An illustration of the
end-to-end model pipeline can be seen figure 17.

Page 38 of 80

From Sign Language to Speech using Artificial Intelligence

3.4.3 Implementation Details - PHOENIX-2014T

The model is trained on the Sign2Text task for 40 epochs with a batch size of 6.
AdamW is used as the optimizer with a weight decay factor of 10−3. For the visual
component of the model as well as the VL-mapper, the initial learning rate is set to
10−3 whereas the language component’s learning rate is initialized as 10−5.

Additionally, a cosine annealing learning rate scheduler is used with Tmax =

nepochs. The augmentations used during training and validation remain identical
to the ones used for Sign2Gloss pretraining as described in section 3.2.6. During
training, the weights of the S3D backbone are frozen to alleviate computational
overhead. Thus, the head network, VL-mapper and weights of mBART constitute
the trainable parameters. For mBART, the dropout is set to 0.3 along with an
attention dropout of 0.1. For the head network, all dropout layers are set to 0.1
as well. The head network is supervised by CTC loss and the objective function of
mBART is KL divergence with label smoothing, as described in section 3.3.4. Each
of the two loss terms are weighted equally during training.

3.5 Evaluation Metrics

In the following, we introduce the various evaluation metrics used to assess the
effectiveness of the model at different training stages.

3.5.1 Word Error Rate

For assessing the quality of gloss prediction, Word Error Rate (WER) is used. This
metric computes the number of insertions, deletions or substitutions necessary to
reproduce a reference sentence from an input sentence divided by the length of the
reference. Hence, given a sequence of input and reference words x and y, respectively,
the WER is given as

WER(x, y) =
Ins(x, y) + Sub(x, y) + Del(x, y)

|y|

3.5.2 ROUGE

The ROUGE-N metric introduced by [17] computes the number of overlapping n-
grams between an input and a reference sentence.

ROUGE-L improved on this by considering the longest common subsequence
(LCS) between the input and reference. Formally, the LCS between two sequences
x ∈ NN and y ∈ NM is the longest sequence of strictly increasing indices I ∈ NK

where xi = yi ∀i ∈ I. Thus, the ROUGE-L measure becomes

ROUGE-L(x,y) =
(1 + β2) ·RLCS(x,y) · PLCS(x,y)

RLCS(x,y) + β2 · PLCS(x,y)

where β = PLCS
RLCS

and RLCS , PLCS are defined as standard recall and precision mea-
sures, respectively, taking the LCS into account. We can express this as

RLCS(x,y) =
LCS(x,y)

|y|
PLCS(x,y) =

LCS(x,y)

|x|

Page 39 of 80

From Sign Language to Speech using Artificial Intelligence

3.5.3 BLEU

The BLEU metric [22] is a popular choice amongst NLP practitioners for evaluating
the corrected of predicted sequences against references. As shown in [22], the metric
has a high correlation with human evaluations in the context of machine translation.

Recall the standard precision measure which, in the context of translation, is
given as the number of unigrams in a predicted sentence that are also present in the
reference sentence divided by the number of words in the predicted sentence. This
measure can result in high precision scores in spite of the translation being poor
e.g. cases where n = 1 and the prediction contains a single word in the reference
duplicated an arbitrary amount of times. To this end, the authors introduce a
modified n-gram precision which for a prediction p and reference r is defined as:

MPn(p, r) =

∑
n-gram ∈ p min(countp(n-gram), countr(n-gram))∑

n-gram′ ∈ p countp(n-gram′)

Hence, multiple occurrences of the same n-gram in a prediction will only be
counted the same amount of times that it occurs in the reference.

Additionally, the authors introduce a brevity penality (BP) to combat cases
where the prediction is shorter than the reference. 8 Given a predicted sentence p
and its corresponds reference r, the brevity penalty is defined as

BP (p, r) =

1 if |p| ≥ |r|

e
1−|r|
|p| else

To combine modified n-gram precisions for different values of n, the authors
propose computing the geometric mean. However, the modified n-gram precision
decays approximately exponentially with a factor of n. To accommodate this, the
logarithm of modified n-gram precision is computed. With the above definitions in
mind, the BLEU metric is given as

BLEU(p, r,N) = BP (p, r) · exp

(
N∑

n=1

1

N
ln(MPn(p, r))

)
Note that the exponentiated term is the geometric mean as expressed in log-scale:

µgeo(A) =

(
n∏

i=1

ai

) 1
n

︸ ︷︷ ︸
Std. µgeo def.

= exp

(
1

n

n∑
i=1

ln(ai)

)

for the list of numbers A = a1, a2, . . . , an.

3.6 Omitting Glosses - Ablation Study

As stated earlier in the context of How2Sign, collecting gloss annotations is heavily
time-consuming. To address this, we decided to conduct a preliminary ablation study

8Note that the reverse i.e. where the prediction is longer than the reference case is already
penalized by modified n-gram precision.

Page 40 of 80

From Sign Language to Speech using Artificial Intelligence

to assess the effect of omitting expertly annotated gloss. Hence, we seek to assess
whether learning a temporally aligned latent representation of sign language videos is
feasible in a weakly-supervised manner. In doing so, it would be possible to leverage
massive SLT datasets containing only videos and natural language translations e.g.
[6] and [25].

3.6.1 Statistical Gloss Approximation

To obtain gloss annotations, we approximate the ground truth glosses using linguistic
rules of DGS and German. Due to lack of expertise regarding DGS and German we
resort to the proposed method by [20]. Following the outlined approach, SpaCy is
used for extracting relevant information about the natural language translation. We
wish to identify the part-of-speech for each word, detect named entities, determine
the grammatical structure of the sentence and lemmatize all words. The approach
of approximating glosses is summarized in algorithm 2 below.

Algorithm 2 Gloss approximation procedure
Goal: Approximate ground truth gloss annotations
Let s denote a sentence represented as a list of words.
Let m denote a NLP model capable of extracting linguistic information from sen-
tences.
Let Swap(s, w1, w2) denote a function that swaps the position of words w1 and
w2 in a sentence s.
Let ExtractSVO(s) denote a function capable of extracting a list of (subject,
verb, object) tuples from a sentence s.

SyntheticGlosses(s, m)
s’ ← m(s) // extract relevant information
SVO ← ExtractSVO(s’)
if length (SVO) > 0

for (S, V, O) in SVO
s ← Swap(s, V, O) // Swap VERB and OBJECT

for word in s’
If word.POS /∈ {NOUN, VERB, ADJECTIVE, ADVERB, NUMERAL}

s.remove(word.text) // Remove word from s
if word.NER = LOCATION

s.remove(word.text)
s.prepend(word.lemma) // Move to start of s

if word.DEP = NEGATION
s.remove(word.text)
s.append(word.lemma) Move to end of s

else
s.replace(word.text, word.lemma)

return s

The procedure highlighted in algorithm 2 is performed for all natural language trans-

Page 41 of 80

From Sign Language to Speech using Artificial Intelligence

lations for the train, test and validation set, respectively. To assess the error associ-
ated with approximating glosses as opposed to using the ground-truth annotations,
the WER between them is reported in table 5 below.

WER
Train Dev Test
87.26 87.64 85.65

Table 5: WER between the ground truth gloss annotations and those obtained by running
algorithm 2 for the different data splits on PHOENIX-2014T.

As seen in table 5, there is a significant error associated with the proposed method.
Generating synthetic glosses leaves us with a gloss vocabulary size of 2391 exclud-
ing the blank token added for CTC training. Thus, it is reasonable to assume
that the approximated glosses will contain more redundant words as well as incon-
sistencies compared to the gold-standard annotations. Upon inspection, there are
some differences in the lemmatization of words computed by SpaCy compared to
the ground-truth glosses. Thus, the same signs may have different yet consistent
annotations when comparing between the ground truth and approximated glosses.
We account for this, to a small extent by converting cardinal directions into single
universal labels e.g. norden, nördlich and other variants are always mapped to nord
(north in German). Both this and filtering for stop words is applied post-hoc to
combat inconsistencies as well as redundancy within annotations.

Page 42 of 80

From Sign Language to Speech using Artificial Intelligence

4 Software Product

In order to enable users to interact with our model, we need to integrate it into a
user application, and provide a user interface. Our design choices for this application
reflect a wish for modularity and decoupling of the different components, but also
resource constraints, since we are developing with the end goal of running it on
consumer-level hardware. Both our ML model pipeline and the modalities of the
data it operates on, i.e. video and audio, are quite resource intensive in nature.
The resource usage is not lessened by the fact that we need to feed our model the
video data in a format resembling the rawvideo format, i.e. as an uncompressed,
multidimensional tensor.

To facilitate a satisfactory user experience, we will thus need to have a simple
user interface, an efficient video processing pipeline and finally our model needs to
work sufficiently fast.

4.1 Problem Formulations

4.1.1 Overall Problem

Our product needs to enable conversation between a person understanding sign lan-
guage and text and a person understanding spoken language and text.

The core problem can be broken down into translating between a sign language
and a spoken language, mapping between different modalities of spoken language
and optionally, translating between spoken languages. We have chosen to design our
software product primarily around the first of these tasks, i.e. the translation of sign
language to spoken language, as it is of course our own model that we have built and
trained.

Our model works in a way that limits its interface to take in full chunks of video
only, which means that the only way to get meaningful output is to perform inference
on the entirety of a signed sentence. This has led us to model general conversations
between a signer and a non-signer in our app as a sequence of interactions using
protocols as shown in figure 18.

Page 43 of 80

From Sign Language to Speech using Artificial Intelligence

(a) Protocol for when the signer is signing.
Note that the output spoken language sen-
tence is read aloud.

(b) Protocol for when the non-signer is
speaking. Note that the output spoken lan-
guage sentence is only displayed.

Figure 18: Conversation protocols for the application.

In these protocols, both the spoken and signed sentences are recorded in chunks,
which the users specifies when pressing start and stop. This means that the conver-
sation flow will consist of one person communicating a sentence and only after this
will the processing begin.

4.1.2 Subproblems

Figure 19: High level overview of the application translation functionality. Note that
natural language translation as well as text-to-speech are optional.

In figure 19, a high level overview of the application translation functionalities are vi-
sualized. Following these functionalities, we have broken the core problem described
above down into the following components:

1. Translate sign language videos into text.

Page 44 of 80

From Sign Language to Speech using Artificial Intelligence

2. Generate speech from text.

3. Transcribe speech into text.

4. Translate text between languages.

5. Ensure inference execution time is sufficiently close to real-time.

Our design take these subproblems into account as follows; 1. should be handled by
our SLT model. 2. should be handled by WaveNet [27], an external API provided
by Google. 3. should be handled by a local instance of OpenAI Whisper [24]. 4.
should similarly to 2, be handled by an external API, provided by Google. 5. is not
currently formulated as concretely as the first three specifications, but we will get
more into that. It will also serve as a useful evaluation metric for the full product
in terms of usability. Furthermore, it is a parameter that can be used to trade off
translation accuracy with efficiency.

4.2 The Real-Time Problem

Before going into the solutions to the subproblems, we will attempt to give a precise
definition of what ’real-time’ performance means in the context of our application.

Within computing, a real-time process or operation usually refers to there being
a guarantee of completion within a certain time. This deadline is highly domain
specific, and will be defined in the context of our application. Recall that the core
aim of our product is to enable conversations between signers and non-signers. The
’protocols’ for such a conversation is illustrated in figure 18.

Our application performs the translation between languages and mapping be-
tween modalities needed to facilitate the conversations. On a high level, it does so
by letting the users record the required input data and then processing the input to
fit the different interfaces of the different models, and then runs inference and present
the results to the users. In terms of what can be deemed as real-time in this context,
the ideal to strive for intuitively corresponds to having a regular conversation.

This is optimistic, however, since the model is unable to perform online, continu-
ous translation, but needs the full context to begin inference. Thus, we set a milder
constraint, and view the role of the app to be that of an translator or interpreter. By
doing so, we allow for the full sentence to be communicated before we start the timer,
so to speak. In other words, latency is only counted from when the user signals to
the application that they are finished with a sentence.

With this definition of latency in mind, we define true real-time performance
for the role of interpreter as less than ∼ 1 second of latency. We set the following
definitions in order to clearly state our performance metrics as well as our target:

App Latency : Time measured between when a language sequence
is finished and the translation result is presented.

Real-time Performance : Less than ∼ 1 second of App Latency.

Page 45 of 80

From Sign Language to Speech using Artificial Intelligence

Figure 20: High level architecture of the software product.

4.3 Backend Architecture

For our application, we choose an architecture with a clear split between user appli-
cation logic and data processing logic.

This allows for more flexibility in choosing the technologies for the user appli-
cation, and also allows for hosting the model and data processing sever separately.
This could be relevant in case we want to interface with the model via a device that
cannot run inference on its own, such as a mobile device.

Our focus however, will be on running the model and data processing application
on the same machine as the user application, in this case an Apple MacBook Pro
2021, as an example of consumer grade hardware. Additionally, to test the applica-
tion when using hardware acceleration, we also conduct tests on a separate system
equipped with an RTX-3060 GPU.

Given this constraint and the fact that a design goal of our application is to
reach true or close to real-time performance (previously defined as <∼ 1 second of
latency), the architecture needs to be designed around efficiency and performance.
From pilot tests of the technologies which we will describe below, we determined
model inference to be the biggest bottleneck in terms of latency. We do not have
many parameters to control inference speed - in fact, since the spatial resolution of
the input data is fixed at the dimensions demanded by our visual encoder network,
we can only tweak the temporal resolution for this purpose. We will investigate the
implications of this later on in this report.

The user application module (client) serves as the interface to the user. From
the user application, video and audio are recorded via the device’s built-in camera
and microphone. These collections of data are then transferred via WebSocket to the
data processing and model inference module (model server). The client then receives
responses back containing the text predictions with corresponding synthesized audio
or transcriptions of the streamed video and audio, respectively. This architecture is
visualized as a high level diagram in figure 20.

Page 46 of 80

From Sign Language to Speech using Artificial Intelligence

The model server is packaged as a server application, which exposes an API,
which can be consumed via the user application. The API has REST and WebSocket
endpoints, which are used for different purposes.

4.3.1 REST

REST is an acronym for REpresentional State Transfer, and the concrete imple-
mentation in our case is through HTTP. The user application sends HTTP requests
for simple configuration changes on the server-side, such as changing target or source
language for the translation functions.

4.3.2 WebSocket

WebSocket is a communications protocol that enables duplex channels over a single
TCP connection, i.e. two-way communication. The WebSocket protocol has lower
data transfer overhead than HTTP, and is in fact designed to facilitate real time
data transfer between client and server.

4.4 Efficient Pipeline for Video Streaming and Processing

In order to improve the real-time aspect of the application, we need to take into
account both the computationally expensive work as well as the latency caused by
transferring data via network protocols. Figure 20 shows an overview of the full
application inference pipeline, which will be described in detail in the following.

In accordance with our aim to build a web application-based client in Google
Chrome, we utilize that the video recorded via webcam is stored in the .webm-
format, which is already compressed via video codec VP8 or VP9, and audio codec
Opus. This means that it will be substantially less expensive to transfer to our model
server.

We stream the serialized compressed video data from the application to our model
server via a WebSocket. The model server receives the data and spawns a subprocess
running the multimedia utility library FFMPEG [26], which it communicates with
using inter-process communication (IPC) pipes. FFMPEG converts the .webm video
into rawvideo, which we are then able to load directly into a tensor object in the
Python runtime.

Now that we have the video stored in memory as a tensor, we can perform a
series of video processing steps to ensure the tensor has correct dimensions, value
ranges and format for our ML model. This ensures that the model is able to handle
the inputs. Additionally, through this novel inputs will resemble the model’s training
data as much as possible.

The video processing steps are modularized into the VideoPipeline class. An
overview of this procedure is given in figure 21 below. Moreover, an overview of the
entire workflow described above is visualized in figure 22.

Page 47 of 80

From Sign Language to Speech using Artificial Intelligence

Figure 21: Video processing steps for converting from input dimensions into the parameters
specified by our model’s API. Implemented in the modular custom class VideoPipeline.

Figure 22: Overview of the workflow for recording, streaming and processing video, running
SLT inference and then receiving the inferred translation.

Page 48 of 80

From Sign Language to Speech using Artificial Intelligence

4.4.1 Temporal Downsampling as a Processing Step

A way that we can tune the execution time of model inference is to apply a temporal
downsample. Hence, we can interpolate the frame sequence along the time axis of the
input. This effectively corresponds to lowering the temporal resolution, potentially
improving the inference time of the model, as it only has to process a shorter frame
sequence.

Obviously, lowering the temporal resolution results in less information that our
model can use. [5] performed an ablation study to assess exactly this. They trained
each part of the model pipeline of the videos with specific downsampling rates. From
the results of [5], as well as our own experiments, which will be introduced later, it is
evident that the model performance degrades notably when temporal downsampling
is applied. That being said, the gain associated with faster inference time may
be desirable in some use-cases. Observations made in this context, which will be
presented and discussed later, serve as motivation for incorporating an option for
users to trade-off between inference time and performance.

To this end, we extend our VideoPipeline-class with an optional temporal down-
sampling step. Concretely, it applies interpolation along the temporal dimension of
the video tensor, separately for each of the three color channels. We will get into two
interpolation modes, linear and nearest, i.e. picking the frame from the old tensor
nearest to the new index along the temporal axis.

In our frontend application, we implement a slider widget that allows the end user
to interpolate between 3 performance modes, corresponding to 3 levels of temporal
resolution (denoted kt), 1, 1

2 and 1
3 of the original resolution, respectively. These are

the same levels as [5] used for their ablation study.

4.5 Model Integrations

As mentioned in section 4.1.2, the core components of our application, besides trans-
lating sign language into text, is generating speech from text, transcribing speech
into text and lastly enabling cross language communication through text to text lan-
guage translation. Due to the scope of the project, we chose to integrate these three
components using established pre-existing models.

Figures 23 and 24 shows a high level overview of these model integrations and
how they are called in sequence, when translating a signed and spoken sequence,
respectively.

Page 49 of 80

From Sign Language to Speech using Artificial Intelligence

Figure 23: High level overview of the sequential calls of the model integrations, when
translating a signed sequence.

Figure 24: High level overview of the sequential calls of the model integrations, when
translating a spoken sequence.

4.5.1 Google Cloud Text-to-Speech API

The text to speech component was implemented through the Google Cloud Text-to-
speech API, using the Wavenet engine [27]. This integration was chosen, due to it’s
highly natural sounding capabilities and low latency. Furthermore, as the component
is integrated through an external API, we omit depleting the limited resources of the
consumer hardware.

As visualized in figure 20, the text-to-speech API calls were implemented in
the application frontend, in contrast to all other signal processing components of the
application. This placement was chosen as a means to avoid any unnecessary latency,
when translating sign language in the backend model server of the application. Thus,
the user is presented with the sign-to-text translation, as soon as the application
receives the response from the backend model server. Following this, the frontend
calls the Text-to-Speech API asynchronously through an HTTP request and plays
the received audio response.

Page 50 of 80

From Sign Language to Speech using Artificial Intelligence

4.5.2 Google Translate API

Similarly, the Google Translate API is used to accommodate language differences
amongst end users. This was implemented due to its efficiency as well as to reduce
the impact on the end-user hardware. As the language translation is necessary
to present the end-user with a response, this component was implemented in the
backend model server, along with the other signal processing components.

4.5.3 OpenAI Whisper

The last integrated pre-trained component, the speech-to-text transcription, was im-
plemented using a locally run instance of the multilingual OpenAI Whisper Speech-
to-Text base-model. In contrast to the previously mentioned components, where
external API connections where implemented, this component is run locally on the
backend model server. By running the model locally we avoid the latency in relation
to calling external API connections. Furthermore, as this variant of the Whisper
model is relatively efficient and does not require a considerable amount of computa-
tional power, this implementation was found to be the most suitable for low latency
transcription.

4.5.4 Our Proposed Sign2Text Model

Similarly, our proposed Sign2Text model was implemented as an instance run locally
on the backend model server to avoid the latency in relation to calling external
API connections. However, as this model is relatively large and expensive to run,
this implementation has a significant impact on both the real-time aspect of the
application, along with the end-user hardware requirements. These implications will
be discussed further in later sections.

4.6 Application Architecture

The main objectives with regards to the architecture of the application is simplicity,
efficiency and cross-platform capabilities. As the end-user of the application does
not necessarily have any particular experience with advanced software interfaces, it
is essential for the application interface to be simple and intuitive. Moreover, in
alignment with our desire to reduce the latency of the backend model server, we
also aim to minimize the amount of time the end-users spend accessing the trans-
lation interface. Thus, the translation setup should be simple. Lastly, in order to
make the application accessible to as many potential end-users as possible, cross-
platform capabilities are crucial. The above mentioned objectives are at the core of
the application architecture and the following design choices where made to satisfy
these.

4.6.1 Flutter Development Kit

Flutter is an open-source UI software development kit created by Google. One of
the key capabilities and advantages of Flutter is the ability to develop cross-platform

Page 51 of 80

From Sign Language to Speech using Artificial Intelligence

applications from a single code base. Thus, by writing the application using the
Flutter development kit, only minor changes have to be implemented throughout
the code base, in order to reach the end-users on platforms such as Android, iOS,
Linux, macOS, Windows, and the web.

Furthermore, Flutter has a large set of pre-written packages available for com-
mon integrations, such as accessing the on-device media-recorders, connecting to
databases and performing web requests. Integrating these packages reduces the work-
load of the application design process.

4.6.2 Firebase Services

Firebase is a collection of backend cloud computing services such as NoSQL databases
and user-authentication, provided by Google. As Firebase and Flutter are both
created by Google, the integration of Firebase in the Flutter application is automatic
and well supported. Furthermore, the Firebase Cloud Firestore NoSQL database
provides fast and reliable real-time services.

For these reasons, the Firebase Authentication and Firebase Cloud Firestore ser-
vices were chosen as the user-authentication and backend database for the application
architecture, respectively.

(a) Welcome Screen. (b) Main Menu. (c) Settings. (d) Get Translations.

Figure 25: Application interface design for configurational screens.

Page 52 of 80

From Sign Language to Speech using Artificial Intelligence

Figure 26: Application interface design for two-way communication / translation screen.

4.6.3 Application Interface

Lastly, but equally important, the application interface was designed to meet the
objectives of the application architecture. Firstly, the application only consists of
five simple screens as shown in figure 25 and 26. 1) The welcome screen, where users
can create an account or log on to an existing account (figure 25a). 2) The main
screen, where users can configure the settings of and begin a translation (figure 25b).
3) The settings, where users are able to change their default settings (figure 25c). 4)
The Get Translations screen, where users are able to get more translations through
contribution or pruchases (figure 25d). 5) The translation screen, where users can
perform two-way communication between signers and non-signers (figure 26).

Furthermore, as the translation configuration screen is used as the main screen,
we minimize the time spend by the user to configure and begin a translation. Addi-
tionally, the default translation configuration, such as the specific sign-language and
spoken language, can be set by the user. Following this, the application will use these
as the default configurations when initializing a translation. Thus, the user is able
to begin a translation rapidly with a few to no steps from opening the application.

4.7 Performance Analysis

In this section, we will go through the experiments and analyses we wish to conduct,
in order to find performance bottlenecks and possible ways of mitigating these issues.

4.7.1 Benchmarking the Application

In order to quantitatively evaluate the performance of the application, we perform
rigorous tests of the various computationally intensive operations performed. The
main focus in this context is the execution time and total latency induced. To ensure
fair comparisons across tests and hardware specifications, the same 100 samples,

Page 53 of 80

From Sign Language to Speech using Artificial Intelligence

which were initially selected at random from the PHOENIX-2014T test-split, are used
throughout benchmarking. We develop a few different testing suites that monitor
the execution time of each subcomponent of the application pipeline.

First and foremost, we will be using various built-in Python timer instruments
to perform the actual measurements. We use and compare the metrics time.time,
time.perf_counter, time.process_time. time.time simply uses the system Real-
Time Clock to get timestamps. time.perf_counter uses the value of a performance
counter, i.e. the highest available time resolution to measure a short duration. The
value of a single such measurement is machine-specific, and only the deltas between
two measurements are informative for us. time.process_time returns the CPU time
of the current process, and pauses for any I/O calls and similar. time.process_time
is not optimal for measuring Pytorch execution times, as it does not reset its counter
when running the test suite. This might be because Pytorch reuses the C++ back-
end process that performs the computations. Because of the unreliable results of
time.process_time for Pytorch, we will mainly be using it to measure the latency
caused by waiting for asynchronous calls to the external Google Translate API. The
test suites are structured as follows:

1. test_suite_slt

• Convert .webm bytes to video tensor.

• [GPU only] Transfer video tensor from RAM to GPU VRAM.

• Process video tensor by running it through VideoPipeline.

• Run Sign2Text inference on processed video tensor.

• Call external Google Translate API to translate the output sentence.

2. test_suite_stt

• Convert .webm bytes to waveform.

• Run Whisper Speech2Text inference on waveform.

• Call external Google Translate API to translate the output sentence.

Note that Text2Speech inference is not included in the SLT performance test. This
component was excluded, as the Text2Speech API is called in parallel with presenting
the end-user with the text-based result. Thus, the true inference latency is not
affected by this step. Each step of the test suites are wrapped in a performance
monitoring function, elaborated in algorithm 3 below.

Page 54 of 80

From Sign Language to Speech using Artificial Intelligence

Algorithm 3 Performance monitor wrapper function for components.
Input: component: function, component_args: dynamic // function to be
tested, and its (variable) input arguments.
Result: (perf_metrics: DataFrame) is extended with performance data.

Let res be a variable for storing function (component) output.
Let start, end and metrics be auxiliary variables for storing the three different
time measurements.
Let StartTimer(), EndTimer() and ComputeMetrics() be auxiliary functions
for getting start times, end times and computing deltas, respectively.

start← StartTimer()

res← component.call(component_args)

end← EndTimer()

metrics← ComputeMetrics(start, end)

append(perf_metrics,metrics) // Append computed metrics to
DataFrame.

We perform all aforementioned experiments on CPU, in order to validate how our
application performs on average consumer level hardware. Furthermore, in order to
test how our application performs using hardware acceleration, we perform identical
experiments on a system with a discrete GPU.

Results of the experiments are presented in section 5.2.

4.7.2 Analyzing the Effect of Temporal Downsampling

To allow for comparisons between the effect of temporal downsampling and other
benchmarks on execution time, the same samples described in section 4.7.1 are used,
along with identical procedures in terms of timing. Furthermore, latency is assessed
on the same examples of consumer-grade hardware as highlighted in section 4.3.
Additionally, to draw comparisons between the ablation study conducted by [5] sur-
rounding temporal downsampling, the same downsampling factors are used i.e. 1

2

and 1
3 .

4.7.3 Modeling and Estimation of Execution Time

When analyzing the results of the measurements from running the test suites, we
obtain a lot of samples of execution times when inputting a different number of
frames. We thus want to use a simple statistical model to get an estimate of the
relative contributions to execution time for each component of the app pipeline.

The two pipelines, for Sign2Text and Speech2Text respectively, both consist of a
some theoretically simple components in terms of their runtime relative to input size,
as well as some much more complex ones, namely our Pytorch model and OpenAI
Whisper.

Page 55 of 80

From Sign Language to Speech using Artificial Intelligence

One approach to estimate runtimes would be to calculate theoretical runtime
complexities in terms of O(n) for our model. The layers and other parameters of the
model are all fixed at inference time.

The variability in execution time comes from the input size to the convolutional
layers, the CTC decoding operation, the subsequent input size to the transformer,
the autoregressive output sequence generation of the transformer and finally, the
beam search decoding operation on the logits of the transformer decoder.

In addition to the variability in the models themselves, the hardware and com-
pilers used to create and run them also plays a large role in the actual run time. The
compiler might have vectorized some of the basic operations used, and some higher-
level operations, such as self-attention9 in the transformer, is massively parallellizable
when using a GPU.

All of these factors make it very complex to create a precise, general estimator,
so this approach is out of scope for this project.

Instead, we focus on an easily interpretable approach, and use linear regression on
the measurements, removing any extreme outliers. An example of regression applied
to the execution times of the Sign2Text pipeline on the GPU can be seen in figure
31 in section 8.3 in the appendix.

9Specifically, the matrix multiplication operations in dot-product attention.

Page 56 of 80

From Sign Language to Speech using Artificial Intelligence

5 Results

This section presents our model performance at different training stages along with
results of the ablation study. The reported benchmarks on model performance are
based on a single training due to the required computational overhead. We ac-
knowledge that training should ideally be conducted several times with the same
configuration to account for deviations. Moreover, the effect on performance when
temporally downsampling input videos is assessed. We also assess the generalizability
of the Sign2Text model by testing performance on never before-seen samples drawn
from the DGS corpus.

Additionally, benchmarks on the runtime for Sign2Text as well as Speech2Text
are shown with varying input lengths and configurations. Lastly, the contributions
of different components to the app latency are highlighted. All results surrounding
latency are, unless otherwise specified, run on a 2021 Apple MacBook Pro with an
M1 Pro processor. GPU tests are performed using a Nvidia RTX 3060 GPU and an
Intel Core i7-10700 CPU.

5.1 Model Performance

Here the obtained results surrounding model performance are outlined and briefly
described.

5.1.1 Sign2Gloss

Below, various benchmarks on the test set of WLASL are presented in terms of top-k
accuracy.

Method top-1 top-5 top-10
VGG-GRU [15] 8.44 23.58 32.58
Pose-TGCN [15] 23.65 51.75 62.24
Pose-GRU [15] 22.54 49.81 61.38

I3D [15] 32.48 57.31 66.31
S3D (ours) 30.16 60.39 70.95

NLA-SLR [32] 61.26 90.91 N/A

Table 6: Top-k accuracy of different models on the test set of WLASL [15].

Below, comparisons between the state-of-the-art (SOTA) model [5] and our results
following Sign2Gloss training are made on the validation and test sets of PHOENIX-
2014T.

Initialization WER val WER test
Kinetics WLASL Ours Org. author Ours Org. author

N/A 27.25 N/A 28.06
✓ 22.99 23.05 23.64 23.50
✓ ✓ 33.43 21.90 33.88 22.45

Table 7: Performance benchmarks on the Sign2Gloss task for PHOENIX-2014T [2].

Page 57 of 80

From Sign Language to Speech using Artificial Intelligence

As evident from the results in table 6, our model performance on WLASL is on
par with other benchmarks, aside from NLA-SLR [32]. This paper, however, is
the current state-of-the-art method on several sign language recognition datasets,
including WLASL. In spite of the relatively competitive performance obtained by
our model on the test set of WLASL, the pre-training by SOTA [5] presumably
yielded better results. This is backed up by the unsatisfactory results when further
training our model on the Sign2Gloss task using our WLASL weights as initialization
(see table 7). Surprisingly, our model with WLASL initialization achieves a higher
WER compared to the 28.06 WER obtained by SOTA when training from scratch.

That being said, our results are on par with SOTA when initializing the S3D
backbone with weights trained on the Kinetics-400 dataset. Thus, the correctness
of the implementation is still verified in spite of the unsuccessful pre-training when
initializing the model with weights trained on WLASL. This is in alignment with the
findings of SOTA that weight initialization has a large effect on model performance.
To verify the correctness of the pipeline during Sign2Text training, the weights ob-
tained during Sign2Gloss training with Kinetics-400 initialization are used. This
allows us to still make direct performance comparisons with SOTA.

5.1.2 Gloss2Text

Here, the results after training our model on the Gloss2Text task are reported and
compared to SOTA [5]. For the validation set, we test the model performance on
beam sizes varying between [1, . . . , 10] and report the results where the highest
BLEU-4 score is observed. On the test set, the same number of beams are used as
for the reported validation results.

Validation
Method ROUGE-L BLEU-1 BLEU-2 BLEU-3 BLEU-4

Org. authors 53.79 54.01 41.41 33.50 28.19
Ours 55.00 51.34 40.28 32.86 27.65

Test
Method ROUGE-L BLEU-1 BLEU-2 BLEU-3 BLEU-4

Org. authors 52.54 52.65 39.99 32.07 26.70
Ours 52.91 49.58 38.77 31.21 25.94

Table 8: Performance on the Gloss2Text task for SOTA [5] and our implementation. Re-
sults are reported for the test set of PHOENIX-2014T.

As shown in table 8, our obtained results when performing Gloss2Text pretraining
are slightly lower compared to SOTA. The only exception to this is the ROUGE-L
metric with which we obtain a slightly better performance. However, our results are
reported for a single training session and as such the slight performance differences
could be attributed to natural training variability.

Page 58 of 80

From Sign Language to Speech using Artificial Intelligence

5.1.3 Sign2Text

Below our results on the validation and test sets of PHOENIX-2014T [2] after
Sign2Text training are presented along with the results of the SOTA [5] model. The
same procedure for determining the appropriate beam size in Gloss2Text is used
here.

Validation
Method ROUGE-L BLEU-1 BLEU-2 BLEU-3 BLEU-4

Org. author 53.10 53.95 41.12 33.14 27.61
Org. author w/o WLASL 53.24 53.99 41.47 33.63 28.19

Ours 51.84 48.59 37.91 30.61 25.44
Test

Method ROUGE-L BLEU-1 BLEU-2 BLEU-3 BLEU-4
Org. author 52.65 53.97 42.01 33.90 28.39

Org. author w/o WLASL 52.42 53.66 41.27 33.36 27.91
Ours 52.07 50.24 39.24 31.78 26.52

Table 9: Benchmark performances on the Sign2Text task for PHOENIX-2014T [2].

As evident from table 9, the performance of our Sign2Text model is slightly lower
compared to SOTA. This could perhaps be attributed to differences witihn the
Gloss2Text training degrading our model performance. However, this is likely not
the sole cause considering that the SOTA model achieves a BLEU-4 score of 26.95
when initializing mBART with weights trained on cc25 [18]. Another plausible ex-
planation could be slight deviations in implementations, perhaps in conjunction with
the aforementioned cause.

5.1.4 Approximating Glosses

Here, the results of our ablation study surrounding the approximation of glosses are
presented. The performance benchmarks are compared to to external literature in
which glosses are either approximated or entirely omitted from the model pipeline.

Sign2Gloss Gloss2Text
WER BLEU-4

Val Test Val Test
70.03 71.20 70.09 70.51

Table 10: Sign2Gloss and Gloss2Text performance after training with approximated
glosses.

As evident from table 10, there is a substantial increase in the WER when performing
Sign2Gloss pre-training. This is expected given that glosses are now approximated
from the natural language translations resulting in less consistency and more redun-
dancy in annotations. This is backed up by considering the significant gap in the
Gloss2Text results compared to those of table 8. Hence, the approximated gloss an-
notations bear a much closer resemblance to the ground-truth translations. Below,

Page 59 of 80

From Sign Language to Speech using Artificial Intelligence

we present the results of our Sign2Text model with approximated glosses and com-
pare it to relevant benchmarks. The components of the model are initialized with
the weights corresponding to the results observed in table 10.

Method ROUGE-L BLEU-1 BLEU-2 BLEU-3 BLEU-4
TSPNet∗ [16] 34.96 36.10 23.12 16.88 13.41
SL-Luong∗ [3] 31.80 32.24 19.03 12.83 9.58

Ours w. gloss approx. 36.77 35.15 24.95 18.97 15.14

Table 11: Comparison of our model performance when gloss annotations have been ap-
proximated with other benchmarks. * denotes models whose architecture does not rely on
glosses.

As seen in table 11, our model outperforms existing benchmarks who also omit
expertly annotated glosses. This is surprising given the relatively simplistic approach
to approximating gloss labels. That being said, the performance is of the Sign2Text
model is significantly reduced when compared to the model trained on expertly-
annotated glosses (see table 9).

5.1.5 Evaluating Real-World Capabilities

Below, our results for the evaluation of the generalization capabilities of our models
are presented. To access this, model performance is evaluated on never before seen
general-domain data sampled from the DGS Corpus dataset [10].

Dataset Sample Strategy OOV % ROUGE-L BLEU-1 BLEU-2 BLEU-3 BLEU-4
PHOENIX-2014T None 2.01% 52.07 50.24 39.24 31.78 26.52

DGS Corpus Domain-Relevant 25.58% 5.48 4.53 0.57 0.01 0.00
DGS Corpus Random 50.11% 4.18 3.81 0.47 0.00 0.00

Table 12: Evaluation of the Sign2Text model on never before seen general-domain data.
OOV denotes the proportion of words that are out-of-vocabulary within the samples. The
first row shows our performance on the within-domain PHOENIX-2014T [2] test set as
comparison. The domain-relevant sample strategy denotes sampling data with respect to
the overlap of vocabulary between the natural language translations and the vocabulary
of the PHOENIX-2014T dataset. The random sample strategy denotes sampling data at
random, without regards for vocabulary overlap. In both cases, 1000 samples were drawn
from the DGS Corpus [10].

As evident from the results shown in table 12, our model performs significantly worse
on the new distribution of the general-domain data. This worsening of performance
is to be expected, as the model is trained on the very specific vocabulary and domain
of the PHOENIX-2014T dataset, along with the relatively limited amount of data
it contains. This illustrates the lack of generalizability present in the current model
and puts into question the validity of the training procedure in a novel user context.

5.1.6 Effect of Temporal Downsampling on Performance

Below, we present the effect on model performance when temporally downsampling
inputs with varying factors kt and methods of interpolation.

Page 60 of 80

From Sign Language to Speech using Artificial Intelligence

kt Interpolation BLEU-4
1 N/A (original) 26.52

1/2 Linear 21.23
1/2 Nearest 22.27
1/3 Linear 16.57
1/3 Nearest 16.68

Table 13: The effect of temporally downsampling videos on model performance as mea-
sured by BLEU-4 score, without retraining. kt denotes downsampling rate, i.e. the relative
temporal resolution compared to the original. The BLEU-4 scores are computed over the
entire test set of PHOENIX-2014T. The interpolation mode Nearest corresponds to copying
the existing frame temporally closest to the interpolated frame. This is what the tests below
use.

As seen in table 13, downsampling the input temporally affects translation accuracy
considerably. Surprisingly, we observe a similar decrease in model performance com-
pared to the ablation study conducted by SOTA [5] in spite of not training the model
on downsampled input videos.

5.2 Application Performance

In this section we will present the results of running our test suites for benchmarking
the execution times and attempting to quantify the contributions to app latency of
the individual components.

5.2.1 Sign2Text

We will first concern ourselves with analyzing the execution-time of the Sign2Text
pipeline. Figure 31 of section 8.3 in the appendix displays two scatter plots over total
execution time of our Sign2Text procedure, given input length on CPU and GPU,
respectively. The sampling of these videos are in accordance with section 4.7.1. The
data points in each scatter plot are fitted using linear regression to estimate the trend
of the relation.

These models show a linear trend for the execution time given the input length,
for both the CPU and GPU results, but in the case of the GPU, there is significantly
more variance.

Given the linear models, we now extrapolate some benchmark values for different
reasonable inputs. These benchmarks are reported in subtables (a) and (b) in table
14 below. The subtables show the total execution time, execution times per compo-
nent, as well as how large a percentage of the total execution time each component
corresponds to, given an input of length 100, 200, and 300 frames, respectively.

Page 61 of 80

From Sign Language to Speech using Artificial Intelligence

CPU
nframes WebmByteToTensor VideoPipeline Sign2Text GoogleTranslate Total
100 0.06s 2.07% 0.03s 0.91% 2.84s 92.04% 0.15s 4.98% 3.09s
200 0.09s 1.73% 0.05s 1.04% 4.89s 94.27% 0.15s 2.96% 5.19s
300 0.12s 1.58% 0.08s 1.09% 6.94s 95.21% 0.15s 2.11% 7.29s

(a) Performance on CPU.
GPU

nframes WebmByteToTensor ToGPU VideoPipeline Sign2Text GoogleTranslate Total
100 0.07s 7.23% 0.01s 0.56% 3e-4s 0.03% 0.61s 60.96% 0.31s 31.22% 1.01s
200 0.11s 6.32% 0.01s 0.33% 3e-4s 0.02% 1.29s 75.06% 0.31s 18.28% 1.72s
300 0.14s 5.94% 0.01s 0.23% 4e-4s 0.01% 1.97s 80.89% 0.31s 12.92% 2.43s

(b) Performance on GPU.

Table 14: Examples of execution times and the percentage of the total time they correspond
to, broken down in the pipeline components, according to our linear model in figure 31. Input
sizes are 100, 200 and 300 frames respectively.

Below we further illustrate the execution time of individual application components.
This is shown in figure 27 in the form of a waterfall diagram depicting CPU and
GPU execution times, given the mean length of the sample videos (130 frames). The
diagram is a stacked horizontal bar chart that is sorted according to the order in
which the components occur in the pipelines.

Figure 27: Waterfall diagram for visualizing the contribution to latency by each individual
component. The ordering along the temporal axis is the same they are called in the model
server.

5.2.2 Speech2Text

For Speech2Text, we evaluate the execution times of the pipeline on both CPU and
GPU, using 36 samples of videos of speech, recorded by ourselves.

In figure 32 in section 8.4 of the appendix, we present scatter plots of total
execution times and the corresponding input lengths, along with a plot of the function
resulting from applying linear regression to the data points.

As with our Sign2Text execution time analysis, we use the linear models to ex-
trapolate some benchmark values for different reasonable inputs. These benchmarks
are reported in subtables (a) and (b) in table 15 below. The table presents the total
execution time, execution times per component, as well as how large a percentage of
the total execution time each component corresponds to, given an input of length 5,
10, and 15 seconds, respectively.

Page 62 of 80

From Sign Language to Speech using Artificial Intelligence

CPU
Input length WebmToWaveform Speech2Text GoogleTranslate Total
5s 0.052s 2.89% 1.574s 87.30% 0.177s 9.81% 1.80s
10s 0.052s 1.79% 2.687s 92.14% 0.177s 6.07% 2.92s
15s 0.052s 1.29% 3.799s 94.31% 0.177s 4.39% 4.03s

(a) Performance on CPU.

GPU
Input length WebmToWaveform Speech2Text GoogleTranslate Total
5s 0.029s 2.82% 0.561s 55.17% 0.428s 42.02% 1.02s
10s 0.029s 2.38% 0.749s 62.15% 0.428s 35.48% 1.21s
15s 0.029s 2.06% 0.937s 67.24% 0.428s 30.70% 1.39s

(b) Performance on GPU.

Table 15: Examples of execution times broken down in the Speech2Text pipeline com-
ponents, according to our linear model in figure 31. Input sizes are 5, 10 and 15 seconds
respectively.

Like with Sign2Text, we further illustrate the execution time of individual application
components. This is shown in figure 28 in the form of a waterfall diagram depicting
CPU and GPU execution times, given the mean length of the sample videos (10.84
seconds). The diagram is a stacked horizontal bar chart that is sorted according to
the order in which the components occur in the pipelines.

Figure 28: Waterfall diagram for visualizing the contribution to latency by each individual
component. The ordering along the temporal axis is the same they are called in the model
server.

5.2.3 Effect of Temporal Downsampling on Latency

The results below present the speedup accomplished on both CPU and GPU by using
temporal downsampling and thus lowering the temporal resolution.
CPU. Firstly, we present the results from the latency results associated with tem-
poral downsampling on CPU.

Page 63 of 80

From Sign Language to Speech using Artificial Intelligence

Figure 29: Waterfall diagram breaking down the time contribution to app latency by
each component for a 130 frame long video, which is the mean of the subset we tested on.
WebmByteToTensor: conversion from video bytes to tensor. VideoPipeline: described
in section 4.4 and illustrated in figure 21. See table 16 for further breakdown of the latency.
Sign2Text: running model inference.

CPU
kt WebmByteToTensor VideoPipeline Sign2Text GoogleTranslate Total
1 0.067s 1.81% 0.036s 0.96% 3.462s 93.09% 0.154s 4.14% 3.72s
1
2 0.067s 2.31% 0.058s 2.00% 2.619s 90.39% 0.154s 5.31% 2.90s
1
3 0.067s 2.51% 0.047s 1.74% 2.411s 90.01% 0.154s 5.74% 2.68s

Table 16: Absolute (in seconds) and relative (as a percentage) contribution to latency by
component in the Sign2Text translation pipeline as it occurs in the application. The exact
measurement uses an input video of 130 frames, which is the mean of the subset we tested
on. Measured using different temporal interpolation factors, kt. Tests are performed on a
subset of size 100 with varying lengths, using a 2021 MacBook Pro with a 8-core M1 Pro
Processor.

GPU. Hereafter, we present the results from the latency results associated with
temporal downsampling on GPU.

Page 64 of 80

From Sign Language to Speech using Artificial Intelligence

Figure 30: Waterfall diagram breaking down the time contribution to app latency by each
component for a 130 frame long video, which is the mean of the subset we tested on. ToGpu:
sending tensor from CPU memory to the GPU memory. See table 17 for further breakdown
of the latency.

GPU
kt WebmByteToTensor ToGPU VideoPipeline Sign2Text GoogleTranslate Total
1 0.077s 6.37% 6e-3s 0.46% 3e-4s 0.03% 0.818s 67.29% 0.314s 25.85% 1.22s
1
2 0.079s 7.51% 6e-3s 0.53% 5e-4s 0.05% 0.646s 61.84% 0.314s 30.07% 1.05s
1
3 0.082s 7.82% 5e-3s 0.53% 5e-4s 0.04% 0.641s 61.48% 0.314s 30.13% 1.04s

Table 17: Absolute and relative contribution to latency by component in the Sign2Text
translation pipeline as it occurs in the application. Measured using different temporal inter-
polation factors, kt. Tests are performed on a subset of size 100 with varying lengths, using
a RTX 3060 graphics processing unit (GPU). Note that the time-scale is much smaller, due
to the large speedup by the GPU. Note that the significantly larger latency from Google
Translate is dependent on external factors and is thus inherently uncontrollable.

As can be seen in figure 30, when using a combination of temporal downsampling
and running on a GPU, we get very close to our definition of true real-time in the
context of our application, which is a latency of < 1 second. In fact, if we do not
perform the spoken language translation step by calling the Google Translate API,
we do achieve real-time performance.

Also, variance in the latency of Google Translate means that even when we use
it, we might still achieve true real-time performance.

Page 65 of 80

From Sign Language to Speech using Artificial Intelligence

6 Discussion

Here, the results outlined in section 5 are discussed in detail in the context of our
research questions. Additionally, we present ideas for future work both with respect
to modeling and the application.

6.1 The Sign2Text Model

Recall that one of the goals of this project was to reproduce the current state-of-the-
art (SOTA) method [5] through manual implementation from scratch. Considering
the results of the Sign2Text model in table 9, reproducing the performance was not
fully possible. This could be attributed to random deviations during training. As
noted earlier, it was not feasible to train the model several times due to constraints
on computational resources, as well as time. Another plausible explanation for the
slight decrease in performance is minor deviations in implementation compared to
SOTA, as a result of manually implementing the outlined method from scratch.
Such deviations would likely lie within either the Gloss2Text pre-training, Sign2Text
training, or a combination of the two. That being said, the achieved performances
during the pre-training steps as well as the final Sign2Text training are either close
to or on par with the results of SOTA.

Although SOTA achieve state-of-the-art performance on PHOENIX-2014T as
well as CSL Daily [31], it is worth noting that the outlined training procedure is
extremely prone to overfitting. As highlighted earlier, both the visual backbone and
head network as well as mBART are trained twice on the dataset in question. This
is backed up by evaluating the model performance on samples drawn from the DGS
corpus [10] as seen in table 12. From this, it is clear that the model has a hard
time generalizing to unseen data even when the majority of words are present in
the vocabulary of the model. Considering some of the observed failure cases of the
model, it is clear that one of the model’s shortcomings is predicting dates. This
is also in line with the findings of SOTA [5] and can in part be attributed to the
low frequency of each date within the training set. Furthermore, there is a large
degree of overlap in the phrase being uttered prior to a date within the training set
of PHOENIX-2014T. As such, the model may have overfitted to the sub-sentence
prior to the date and then it subsequently hallucinates or guesses some date. This
tendency to learn entire phrases that are likely to occur within the training data
could explain the unsatisfactory results when evaluating performance on the DGS
corpus.

6.1.1 Reproducibility

A general trend when comparing our results at various stages against those obtained
by SOTA[5] is that our performance is slightly lower. Several underlying factors
could play a part in this. For one, SOTA simply referenced a previous paper regard-
ing WLASL pretraining details, and spite of following the outlined approach, the
results during Sign2Gloss training could not be replicated. Additionally, SOTA pub-
lished their code half way through this project, and their repository contains code

Page 66 of 80

From Sign Language to Speech using Artificial Intelligence

for several SLT papers. This made differentiating between which code-snippets were
used for what project cumbersome. Also, several of their implementations were ei-
ther not described in the paper or only briefly touched upon. This includes the usage
of dropout layers as well as latent dimension in the convolutional block in the head
network, the usage of KL divergence as the loss function of mBART and the proce-
dure of applying label smoothing. Additionally, when comparing the implementation
details described in SOTA to the configuration files in the associated repository there
are clear omissions and discrepancies. This lack of specification lead to additional
missteps during implementation and added to the difficulty of reproducing the model
from scratch.

6.1.2 Approximating Glosses

Although SOTA [5] achieve state-of-the-art performance, the reliance on glosses con-
stitutes a major bottleneck with respect to data availability. Considering the con-
ducted ablation study, the Sign2Gloss and Gloss2Text results, as seen in table 10,
indicate that there is a large degree of noise present in the generated gloss labels.
Naturally, the Gloss2Text task becomes significantly easier since the gloss annota-
tions and natural language sequences bear more resemblance to each other. On
the contrary, the Sign2Gloss mapping is made significantly harder which can be at-
tributed to redundancy in and inconsistencies with the labels. As noted earlier, a
key assumption with the CTC training objective is temporal consistency between
the input sequence and target labels which is very likely to be violated in most
appoximated gloss labelings.

That being said, the results obtained during Sign2Text training when approx-
imating glosses, as seen in table 11, are encouraging. Comparing the model per-
formances with external benchmarks may suggest that approximating glosses and
leveraging supervised methods is beneficial over existing approach which entirely
omit them. The relative simplicity of the approximation method further adds to
this. Generating glosses based on natural language translations and linguistic rules
of the sign language in question is, of course, universal. However, downstream per-
formance will likely vary based on the linguistic properties of the sign language.

6.2 Assessing the Real-Time Problem

A key aspect of facilitating efficient two-way communication between users is latency.
Many of the design choices surrounding the development of the application were made
precisely with this in mind.

As evident from the results in table 14 as well as figures 31(a) and 31(b), the app
latency scales approximately linearly with the number of input frames. This trend
is most prevalent when running on CPU. This can be attributed to the application
pipeline, up until the beam search decoding of mBART, being sped up significantly.
As such, fluctuations in inference time are primarily dependent on beam search
decoding which is run on CPU. The latency associated with this step will have a
large variance since it is dependent on the signal in the input video. Additionally,

Page 67 of 80

From Sign Language to Speech using Artificial Intelligence

the effect of applying Text2Speech and post-hoc translation on the app latency is
negligible.

The results in 14 show that the our application performance for both Sign2Text
and Speech2Text does approach realtime performance, as we have defined it, but
only when using hardware acceleration by running model inference on the GPU. The
rate at which model inference time grows as a function of the input size is simply
much higher on CPU.

As noted earlier, [5] conducted an ablation study on the effect on performance
when training the various stages of the pipeline of the model on temporally downsam-
pled inputs temporally. They find that downsampling with rates kt = 1

2 7→ 50% and
kt =

1
3 7→ 66.7% yields BLEU-4 scores of 25.59 and 21.89, respectively. Surprisingly,

we observe a similar level of degrade in performance when simply running inference
on downsampled videos without re-training the model, see table 13. Coupling this
with the results seen in table 14, there is an apparent trade-off between performance
and app latency which may be desirable in some use-cases. This served as motiva-
tion for incorporating the option of specifying this trade-off within the application
as illustrated in figure 25 (b). Thus, incorporating temporal downsampling in the
video processing pipeline could in fact prove to be useful for improving the real-time
performance of the application.

6.3 Creating a Real World Application

To assess the usefulness of the developed model in an end-user context, we test the
Sign2Text model on samples from the DGS Corpus [10]. Although the ideal scenario
would be evaluating with a native DGS speaker it was, in spite of numerous attempts,
not possible to obtain a contact. Naturally, PHOENIX-2014T is confined to the
specific-domain of weather forecasts whereas DGS corpus consists of conversations
that span a general-domain. For this reason, we assessed performance both on cases
where samples are randomly drawn from the DGS Corpus as well as samples where
we account for whether words are present in the vocabulary. The former is used to
assess the effectiveness of the current system in a general user setting. The latter
is used as a proxy to assess how well a model with identical architecture whose
vocabulary spans a general-domain would perform on new users.

From the results of this experiment, as seen in table 12, it is evident that the
Sign2Text model is unable to generalize to new samples. Although, the proportions
of words that are out-of-vocabulary is relatively high, this cannot adequately explain
the decrease in model performance. A more plausible explanation lies with the
training procedure and its proneness to overfitting as touched upon earlier. Although
the fps of the DGS Corpus is 50, twice the amount of PHOENIX-2014T, temporally
downsampling the samples has a negligible difference on performance. Coupling this,
with the results in table 13, this is presumably not the deciding factor behind the
unsatisfactory results.

Although these results put into question the validity of the approach, this ex-
periment cannot assess the generalizability of a Sign2Text model trained on a large,
general-domain corpus.

Page 68 of 80

From Sign Language to Speech using Artificial Intelligence

6.4 Accommodating Language Differences

When aiming to enable two-way communication between signers and non-signers in
an application setting, it might be beneficial to accommodate both differences in
modalities as well as language. To access whether it is possible to accommodate
these differences, without compromising latency and accuracy, we conduct the tests
presented in 5.2.

6.4.1 Associated Latency

As a means to access whether it is possible to accommodate language differences in
a real world sign language translation application, we discuss upon the results from
5.2.

Accommodating language differences. As can be seen by the results of table
14, the vast majority of the latency associated with performing SLT inference on our
application is caused by the Sign2Text model. On both the tests conducted on CPU
and on GPU, the natural language translation model only accounts for 0.15s and
0.31s latency, respectively. The difference in latency for the two tests, might be due
to differences in internet connection. However, while the natural language translation
only accounts for 4− 5% of the inference time on CPU, it almost accounts for one
third of the inference time on GPU. Hereby, SLT inference on GPU increases from
below to above the true real-time criteria specified in section 4.2. Thus, it might
be difficult to achieve true real-time performance, while accommodating language
differences, given our current application architecture.

Accommodating modality differences. As can be seen by the results of table
15, the ability to enable true two-way communication through Speech2Text transla-
tion, comes at a cost of latency. Even though this latency is relatively insignificant,
the Speech2Text inference still surpasses the real-time criteria specified in section
4.2. However, it can be argued that omitting this feature would result in a worsen-
ing of the end-user experience, as the two-way communication between signer and
non-signers would be compromised.

6.4.2 Accumulating Inaccuracy

Moreover, as each of the models implemented in the application architecture have
an associated error, we also introduce greater inaccuracies into our pipeline, by ac-
commodating the aforementioned language differences. As the application inference
pipeline depends on 2 and 3 independent models for Speech2Text and Sign2Speech
respectively, the inaccuracy of each model will accumulate downstream. However,
while the chosen models all achieve near state-of-the-art performance, it is still im-
portant to keep these accumulating inaccuracies in mind.

Naturally models within the domain of neural machine translation, speech syn-
thesis and automatic speech recognition will improve over time. However, as we
designed the application pipeline modularized, replacing each model independently
will require few adjustments to the architecture.

Page 69 of 80

From Sign Language to Speech using Artificial Intelligence

6.5 Future Research - Towards Commercial SLT

Several additional challenges present themselves when considering to launch a SLT
application in a real-world setting. For one, SLT datasets are under restrictive licens-
ing and do not allow for commercial usage. Thereby, preliminary data collection will
be required and ideally some extraordinary license agreement with data publishers.
Due to the scarcity of data, it would be reasonable to incorporate data collection into
the application pipeline. Additionally, the generalizability of the state-of-the-art ap-
proach introduced in [5] remains to be determined. Moreover the latency surrounding
translations entails that communication between signers and non-signers will have a
noticeable delay.

6.5.1 General domain SLT

Being able to conduct SLT in a general domain will first and foremost require a
large and varying vocabulary. To leverage datasets which fulfill this prerequisite, the
omission of expert annotated glosses is necessary as seen in table 3. This is also
backed up by the remarks from the authors of How2Sign [6] regarding annotation
time. In the following, we consider different means to achieve this.

Gloss approximation. A general approach to combating the requirement for gold-
standard annotations is approximation. Within other domains of computer vision,
resorting to weakly supervised learning as a means to increase data quantities has
been demonstrated to greatly increase the generalizability and robustness of algo-
rithms [19] [13]. Although the outlined approach to approximating glosses yields
encouraging results on the PHOENIX-2014T dataset, it is evident that there re-
mains a significant gap in comparison to relying on ground-truth annotations.

Future research could focus on enhancing gloss approximations and perhaps omit-
ting the requirement of expert knowledge regarding the properties of the sign lan-
guage in question. A potentially useful resource in the context of gloss approxima-
tion is the ASLG-PC12 dataset [30], a large artificially generated corpus containing
parallel English sentences and ASL glosses. Considering this in conjunction with
OpenASL [25] and How2Sign [6] could help facilitate general-domain SLT models.

Omitting glosses entirely. Another way of leveraging available SLT datasets
could be training an autoencoder to reconstruct the raw videos and using this as the
visual backbone. Although this could satisfy temporal alignment of the latent sign
representations, it will introduce a large degree noise. Without some intervention,
the embedding space of such a model might capture more information about the
environment and features of the person signing rather than the actual signs and facial
expressions. Thus, an important component of such a system would be invariance
towards body type, race and background. If not accounted for, inductive biases
unrelated to the signed sequence may weigh in on the final prediction.

Assessing whether this criteria is fulfilled could be possible through WLASL [15]
considering its diverse signer background and gloss distribution as seen in table 2
and figure 2 respectively. Given that a set of K = {1, ...,M} distinct signers all

Page 70 of 80

From Sign Language to Speech using Artificial Intelligence

sign the same phrase, it would be reasonable to want the model to yield identical
outputs i.e. satisfy that P (ŷ|K = i) = P (ŷ|K = j) ∀i,j ∈ K. However, this does not
take into account whether the errors of the model are the same. Perhaps a better
heuristic would be separation and thereby conditioning on the ground truth along
with the signer ID i.e. P (ŷ|y,K = i) = P (ŷ|y,K = j) ∀i,j ∈ K. This constraint is
equivalent to equalizing the TPR and FPR of the model.

Perhaps bias and noise mitigation in the context of having an autoencoder as
the visual backbone could be achieved through spatial masking of the input features
as a preprocessing step. Such a method should preserve temporal features as well
as information about the depths of objects present in the video. Such an approach
could simultaneously address the concerns raised surrounding privacy.

6.5.2 Approaching Real-Time Through Cloud Hosting

Considering the contribution of different pipeline components on the app latency as
shown in table 14, it is clear that Sign2Text model inference is the primary bottle-
neck. Although inference on the Google Translate model is called through an API
and therefore acquire the latency related to this, the associated latency is orders of
magnitude lower then that of the sign2text model.

These findings suggest, that our application inference latency might benefit from
moving all local model instances to a capable cloud hosting service. This is further
supported by the results from figure 31(b), where even a consumer level accelerated
hardware show significant improvements in inference latency, even approaching real-
time as defined in 4.2.

By assuming that our Sign2Text model could obtain similar inference time as the
Google Translate model, when moved to a cloud hosting service, this restructuring of
our pipeline could potentially enable the application to achieve real-time performance
as defined in section 4.2. Furthermore, by moving our local model instances to a cloud
hosting service, we also reduce the requirements for the end-user hardware.

Moreover, as we designed the application architecture modularized, this imple-
mentation change would require few changes to the source code.

However, the data format of the sign language videos are represented by vastly
more bytes, than both natural text and audio speech. This could increase the la-
tency of model significantly when having to send the sign videos through an API
connection.

A way to combat this, would be to implement the sign2text model as a hybrid
between a local instance and a cloud hosted API. For this setup, the visual encoder
of the model could run as a local instance, while the modality mapper and language
model was running on a cloud hosting service. Thus, the visual encoder would
compress the information of the sign videos into embeddings. These embeddings
would significantly reduce the amount of bytes sent through the API by a factor of
1176.

Page 71 of 80

From Sign Language to Speech using Artificial Intelligence

6.5.3 Benefits of a Modularized Architecture

Lastly, as mentioned previously in section 6.4.2, the fields of SLT, neural machine
translation, speech synthesis and automatic speech recognition will evolve in the
future. Considering future improvements of both our own SLT model, in addition
to external dependencies, the translation pipeline of our application might become
obsolete in the near future.

An example of these improvements of external dependencies, is the newly pub-
lished paper Scaling Speech Technology to 1,000+ Languages from Meta AI [23].
Here, the authors achieve a more than double in performance of their Speech2Text
model compared to OpenAI Whisper [24]. Thus, our pipeline might will likely see
improvements by replacing this component.

However, as we designed the application architecture modularized, replacing each
individual component requires few implementation details. Thus, by modularizing
the pipeline, we ensure an extendable and easily maintainable application.

Page 72 of 80

From Sign Language to Speech using Artificial Intelligence

7 Conclusion

To conclude the project, we have successfully reproduced the state-of-the-art sign
language translation model introduced in SOTA [5]. The slight deviations in perfor-
mance is likely a result of minor deviations within implementation as well as noise
in measurements. Additionally, we have assessed the effect of omitting expertly-
annotated glosses within the model framework. In spite of the simplicity of the
approach, we outperform existing approaches in which glosses are entirely omitted.
This suggests that gloss approximation may be a fruitful avenue for future research,
as a means to leverage large datasets within SLT.

Furthermore, we have developed an application which approaches real-time com-
munication, as defined in section 4.2, between signers and non-signers on consumer-
grade hardware. In this context, a trade-off between app latency and performance
was observed by means of temporal downsampling. To accommodate use-cases in
which this may be desirable, user-specification of this parameter was enabled. Addi-
tionally, language barriers between users are alleviated through the usage of various
external APIs.

Lastly, we have assessed the generalizability of the developed model by drawing
samples from the general-domain DGS corpus. This proxy task illustrates that the
developed model fails to generalize to new samples. This suggests that the training
procedure of the model is highly prone to overfitting. Assessing whether this inability
to generalize would hold had the model been trained on a large SLT dataset is,
however, not accounted for through this experiment. As such, we leave this as an
open-ended research question.

Page 73 of 80

From Sign Language to Speech using Artificial Intelligence

References

[1] Samuel Albanie, Gül Varol, Liliane Momeni, Hannah Bull, Triantafyllos
Afouras, Himel Chowdhury, Neil Fox, Bencie Woll, Rob Cooper, Andrew Mc-
Parland, and Andrew Zisserman. BOBSL: BBC-Oxford British Sign Language
Dataset. 2021.

[2] Necati Cihan Camgöz, Simon Hadfield, Oscar Koller, Hermann Ney, and
R. Bowden. Neural sign language translation. 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 7784–7793, 2018.

[3] Necati Cihan Camgöz, Simon Hadfield, Oscar Koller, Hermann Ney, and
R. Bowden. Neural sign language translation. 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 7784–7793, 2018.

[4] Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new
model and the kinetics dataset, 2018.

[5] Yutong Chen, Fangyun Wei, Xiao Sun, Zhirong Wu, and Stephen Lin. A simple
multi-modality transfer learning baseline for sign language translation. 2022
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 5110–5120, 2022.

[6] Amanda Duarte, Shruti Palaskar, Lucas Ventura, Deepti Ghadiyaram, Kenneth
DeHaan, Florian Metze, Jordi Torres, and Xavier Giro-i Nieto. How2Sign: A
Large-scale Multimodal Dataset for Continuous American Sign Language. In
Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

[7] National Geographic. Sign language. https://education.
nationalgeographic.org/resource/sign-language/.

[8] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzyn-
ska, Susanne Westphal, Heuna Kim, Valentin Haenel, Ingo Fründ, Peter Yian-
ilos, Moritz Mueller-Freitag, Florian Hoppe, Christian Thurau, Ingo Bax, and
Roland Memisevic. The "something something" video database for learning and
evaluating visual common sense. CoRR, abs/1706.04261, 2017.

[9] Alex Graves, Santiago Fernández, Faustino J. Gomez, and Jürgen Schmidhuber.
Connectionist temporal classification: labelling unsegmented sequence data with
recurrent neural networks. Proceedings of the 23rd international conference on
Machine learning, 2006.

[10] Thomas Hanke, Marc Schulder, Reiner Konrad, and Elena Jahn. Extending
the Public DGS Corpus in size and depth. In Proceedings of the LREC2020
9th Workshop on the Representation and Processing of Sign Languages: Sign
Language Resources in the Service of the Language Community, Technological
Challenges and Application Perspectives, pages 75–82, Marseille, France, May
2020. European Language Resources Association (ELRA).

Page 74 of 80

https://education.nationalgeographic.org/resource/sign-language/
https://education.nationalgeographic.org/resource/sign-language/

From Sign Language to Speech using Artificial Intelligence

[11] Hamid Reza Vaezi Joze and Oscar Koller. Ms-asl: A large-scale data set and
benchmark for understanding american sign language, 2019.

[12] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sud-
heendra Vijayanarasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev,
Mustafa Suleyman, and Andrew Zisserman. The kinetics human action video
dataset, 2017.

[13] Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica
Yung, Sylvain Gelly, and Neil Houlsby. Big transfer (bit): General visual rep-
resentation learning, 2020.

[14] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising
sequence-to-sequence pre-training for natural language generation, translation,
and comprehension, 2019.

[15] Dongxu Li, Cristian Rodriguez-Opazo, Xin Yu, and Hongdong Li. Word-level
deep sign language recognition from video: A new large-scale dataset and meth-
ods comparison. 2020 IEEE Winter Conference on Applications of Computer
Vision (WACV), pages 1448–1458, 2019.

[16] Dongxu Li, Chenchen Xu, Xin Yu, Kaihao Zhang, Ben Swift, Hanna Suominen,
and Hongdong Li. Tspnet: Hierarchical feature learning via temporal semantic
pyramid for sign language translation, 2020.

[17] Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In
Annual Meeting of the Association for Computational Linguistics, 2004.

[18] Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan
Ghazvininejad, Mike Lewis, and Luke Zettlemoyer. Multilingual denoising pre-
training for neural machine translation. Transactions of the Association for
Computational Linguistics, 8:726–742, 2020.

[19] Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Kaiming He, Manohar
Paluri, Yixuan Li, Ashwin Bharambe, and Laurens van der Maaten. Exploring
the limits of weakly supervised pretraining, 2018.

[20] Amit Moryossef, Kayo Yin, Graham Neubig, and Yoav Goldberg. Data aug-
mentation for sign language gloss translation. In Machine Translation Summit,
2021.

[21] World Health Organization. Deafness and hearing loss. https://www.who.int/
health-topics/hearing-loss#tab=tab_2.

[22] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method
for automatic evaluation of machine translation. In Proceedings of the 40th An-
nual Meeting of the Association for Computational Linguistics, pages 311–318,
Philadelphia, Pennsylvania, USA, July 2002. Association for Computational
Linguistics.

Page 75 of 80

https://www.who.int/health-topics/hearing-loss#tab=tab_2
https://www.who.int/health-topics/hearing-loss#tab=tab_2

From Sign Language to Speech using Artificial Intelligence

[23] Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu,
Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi,
and et al. Scaling speech technology to 1,000+ languages, May 2023.

[24] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey,
and Ilya Sutskever. Robust speech recognition via large-scale weak supervision.
ArXiv, abs/2212.04356, 2022.

[25] Bowen Shi, Diane Brentari, Greg Shakhnarovich, and Karen Livescu. Open-
domain sign language translation learned from online video. In EMNLP, 2022.

[26] Suramya Tomar. Converting video formats with ffmpeg. Linux Journal,
2006(146):10, 2006.

[27] Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol
Vinyals, Alex Graves, Nal Kalchbrenner, Andrew W. Senior, and Ko-
ray Kavukcuoglu. Wavenet: A generative model for raw audio. ArXiv,
abs/1609.03499, 2016.

[28] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need, 2017.

[29] Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and Kevin P. Murphy.
Rethinking spatiotemporal feature learning: Speed-accuracy trade-offs in video
classification. In European Conference on Computer Vision, 2017.

[30] Kayo Yin and Jesse Read. Better sign language translation with STMC-
transformer. In Proceedings of the 28th International Conference on Computa-
tional Linguistics, pages 5975–5989, Barcelona, Spain (Online), December 2020.
International Committee on Computational Linguistics.

[31] Hao Zhou, Wengang Zhou, Weizhen Qi, Junfu Pu, and Houqiang Li. Improving
sign language translation with monolingual data by sign back-translation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1316–1325, 2021.

[32] Ronglai Zuo, Fangyun Wei, and Brian Mak. Natural language-assisted sign
language recognition, 2023.

Page 76 of 80

From Sign Language to Speech using Artificial Intelligence

8 Appendix

8.1 Table of Contributions

Project Subject A. Bigom(%) M. Harborg(%) N. R. Holm(%)
Model

Sign2Gloss 30 30 40
Gloss2Text 40 30 30
Sign2Text 40 30 30
Ablation Study 25 50 25
Performance Tests 30 30 40

Application
Frontend 40 30 30
Video Processing Pipeline 30 30 40
Backend Model Server 30 30 40
External API modules 40 30 30
Firebase Authentication 40 30 30
Firestore Cloud Database 40 30 30
Application Build 40 30 30
Performance Tests 30 30 40

Table 18: Table of contribution for the implementations of the project.

Page 77 of 80

From Sign Language to Speech using Artificial Intelligence

Project Subject A. Bigom(%) M. Harborg(%) N. R. Holm(%)
Introduction

Research Questions Equal.
Report Outline 30 40 30

Data
Presentation and Summary Statistics 40 30 30
Ethical Considerations 30 40 30

Methods
Proposed Model Architecture 40 30 30
Sign2Gloss Task 30 30 40
Gloss2Text Task 30 40 30
Sign2Text Task 40 30 30
Evaluation Metrics 30 30 40
Omitting Glosses - Ablation Study 30 40 30

Software Product
Problem Formulations 30 40 30
The Real-Time Problem 30 30 40
Backend Architecture 40 30 30
Efficient Pipeline for Video[. . .] 30 30 40
Model Integrations 30 40 30
Application Architecture 40 30 30
Performance Analysis 30 30 40

Results
Model Performance 30 40 30
Application Performance 30 30 40

Discussion
The Sign2Text Model 40 30 30
Assessing the Real-Time Problem 30 30 40
Creating a Real World Application 40 30 30
Accommodating Language Differences 30 40 30
Future Research 30 30 40

Conclusion
Conclusion Equal.

Table 19: Table of contribution for the report of the project.

8.2 Links to Project and Application

Item Link
Sign2Gloss GitHub Repository GitHub
Gloss2Text GitHub Repository GitHub
Sign2Text GitHub Repository GitHub

Application Frontend GitHub Repository Due to unwanted access to
the API keys used, this repo is private.

Please contact andreasbigom@gmail.com for access.
Application Backend GitHub Repository GitHub

Model Checkpoints Google Drive
Application Installation Google Drive
CTC_decoding.ipynb Google Colab

Table 20: Link to the project code base, model checkpoints for the results presented in 5
and for the installation of the application.

Page 78 of 80

https://github.com/SignLanguage2Speech/Vision_model.git
https://github.com/SignLanguage2Speech/Translation_model.git
https://github.com/SignLanguage2Speech/Sign2Text.git
https://github.com/SignLanguage2Speech/SLTServer.git
https://drive.google.com/drive/folders/1m2SsrS2hMpb4hI_dJ7bbWDGTJ6bqEBk5?usp=sharing
https://drive.google.com/drive/folders/1BhewDTnPABszdhpFPQhh52UhppbGlSOT?usp=sharing
https://tinyurl.com/CTCdecoding

From Sign Language to Speech using Artificial Intelligence

8.3 Linear Models for Execution Time - Sign2Text

(a) Linear approximation of the execution of the Sign2Text application pipeline
on CPU. Tests are performed on a 2021 Apple MacBook Pro M1 Pro with 8 CPU
cores. Note that kt is a temporal downsampling factor, and is only displayed
here to

(b) Linear approximation of the execution of the Sign2Text application pipeline
on GPU. Tests are performed using an NVIDIA RTX 3060 GPU with 8GB of
VRAM.

Figure 31: Linear models for execution time comparison of Sign2Text pipeline.

Page 79 of 80

From Sign Language to Speech using Artificial Intelligence

8.4 Linear Models for Execution Time - Speech2Text

(a) Linear approximation of the execution of the Speech2Text application
pipeline on CPU. Tests are performed on a 2021 Apple MacBook Pro M1 Pro
with 8 CPU cores.

(b) Linear approximation of the execution of the Speech2Text application
pipeline on GPU. Tests are performed using an NVIDIA RTX 3060 GPU with
8GB of VRAM.

Figure 32: Linear models for execution time comparison of Speech2Text pipeline.

Page 80 of 80

	Introduction
	Research Questions
	Report Outline

	Data
	Presentation and Summary Statistics
	PHOENIX-2014T
	WLASL
	Kinetics-400
	Properties of the Considered Datasets
	General Data Availability

	Ethical Considerations
	Privacy
	Bias

	Methods
	Proposed Model Architecture
	Sign2Gloss Task
	S3D
	Classifier
	Implementation Details - WLASL (Single Gloss)
	Head Network
	CTC Loss and Decoding
	Implementation Details - PHOENIX-2014T (Gloss-Sequence)

	Gloss2Text Task
	Transformers
	mBART
	Beam Search Decoding
	Implementation Details PHOENIX-2014T

	Sign2Text Task
	VL-mapper
	Full Model Pipeline
	Implementation Details - PHOENIX-2014T

	Evaluation Metrics
	Word Error Rate
	ROUGE
	BLEU

	Omitting Glosses - Ablation Study
	Statistical Gloss Approximation

	Software Product
	Problem Formulations
	Overall Problem
	Subproblems

	The Real-Time Problem
	Backend Architecture
	REST
	WebSocket

	Efficient Pipeline for Video Streaming and Processing
	Temporal Downsampling as a Processing Step

	Model Integrations
	Google Cloud Text-to-Speech API
	Google Translate API
	OpenAI Whisper
	Our Proposed Sign2Text Model

	Application Architecture
	Flutter Development Kit
	Firebase Services
	Application Interface

	Performance Analysis
	Benchmarking the Application
	Analyzing the Effect of Temporal Downsampling
	Modeling and Estimation of Execution Time

	Results
	Model Performance
	Sign2Gloss
	Gloss2Text
	Sign2Text
	Approximating Glosses
	Evaluating Real-World Capabilities
	Effect of Temporal Downsampling on Performance

	Application Performance
	Sign2Text
	Speech2Text
	Effect of Temporal Downsampling on Latency

	Discussion
	The Sign2Text Model
	Reproducibility
	Approximating Glosses

	Assessing the Real-Time Problem
	Creating a Real World Application
	Accommodating Language Differences
	Associated Latency
	Accumulating Inaccuracy

	Future Research - Towards Commercial SLT
	General domain SLT
	Approaching Real-Time Through Cloud Hosting
	Benefits of a Modularized Architecture

	Conclusion
	Appendix
	Table of Contributions
	Links to Project and Application
	Linear Models for Execution Time - Sign2Text
	Linear Models for Execution Time - Speech2Text

